

La Villa 2006: X-ray and Gamma-Ray Astronomy

Jörn Wilms

- 1. Imaging in X-ray Astronomy
 - Mirrors
 - CCD-Detectors
 - Example: XMM-Newton
- 2. X-ray spectral fitting

Earth's Atmosphere

Earth's atmosphere is opaque for all types of EM radiation except for optical light and radio.

Major contributer at high energies: photoabsorption $(\propto E^{-3})$, esp. from oxygen (edge at ~500 eV). See later.

Charles & Seward, Fig. 1.12

⇒ If one wants to look at the sky in other wavebands, one has to go to space!

Introduction

Cassegrain telescope, after Wikipedia

Reminder: Optical telescopes are usually reflectors:

primary mirror \rightarrow secondary mirror \rightarrow detector

Main characteristics of a telescope:

• collecting area (i.e., open area of telescope, $\sim \pi d^2/4$, where d: telescope diameter)

θ

• for small telescopes: angular resolution,

$$= 1.22 \frac{\lambda}{d} \tag{1}$$

Optical telescopes are based on principle that reflection "just works" with metallic surfaces. For X-rays, things are more complicated...

Light in glass at glass/air interface: $n = 1/1.6 \Longrightarrow \theta_c \sim 50^\circ \Longrightarrow$ principle behind optical fibers.

Imaging

Optical Imaging, III

X-rays: theory gives index of refraction vacuum versus material as

$$n = 1 - N_{\mathsf{A}} \frac{Z}{A} \frac{r_{\mathsf{e}}}{2\pi} \rho \lambda^2 =: 1 - \delta \tag{4}$$

 $N_{\rm A}$: Avogadro's number, $r_{\rm e} = 2.8 \times 10^{-15}$ m, Z: atomic number, A: atomic weight (Z/A ~ 0.5), ρ : density, λ : wavelength (X-rays: $\lambda \sim 0.1-1$ nm).

Critical angle for X-ray reflection:

$$\cos\theta_{\rm c} = 1 - \delta \tag{5}$$

Since $\delta \ll 1$, Taylor ($\cos x \sim 1 - x^2/2$):

$$heta_{
m c} = \sqrt{2\delta} = 56'
ho^{1/2} rac{\lambda}{1~
m nm}$$

So for $\lambda \sim 1$ nm: $\theta_{c} \sim 1^{\circ}$.

To increase θ_c : need material with high $\rho \implies \text{gold} (XMM-Newton)$ or iridium (Chandra).

Imaging

(6)

Reflectivity for Gold

To obtain manageable focal lengths (\sim 10 m), do imaging with telescope using two reflections on a parabolic and a hyperboloidal mirror (Wolter, 1952, for X-ray microscopes, Giacconi, 1961, for UV- and X-rays).

But: small collecting area ($A \sim \pi r^2 l/f$ where f: focal length)

Imaging

Wolter Telescopes, II

ESA/XMM Solution to small collecting area: nested mirrors

Mirror manufacture, I

Recipe for making an X-ray mirror:

- 1. Produce mirror negative ("Mandrels"): Al coated with Kanigen nickel (Ni+10% phosphorus), super-polished [0.4 nm roughness]).
- 2. Deposit 250 nm Au onto Mandrel
- 3. Deposit 1 mm Ni onto mandrel ("electro-forming", 10 μ m/h)
- 4. Cool Mandrel with liquid N. Au sticks to Nickel
- 5. Verify mirror on optical bench.

Total production time of one mirror: 12 d, for XMM: 3×58 mirrors.

Imaging

Mirror manufacture, II

Gold plastered mandrel for one of the XMM mirrors before electroforming the Ni shell onto the gold.

ESA picture 96.05.006-070

12

Mirror manufacture, III

... insertion of Mandrel into electroforming bath

ESA picture 96.12.002-016

13

Mirror manufacture, IV

... and the mirror is done

ESA picture 96.12.002-093

14

XMM-Newton

Top of the XMM mirrors: 3 mirror sets, each consisting of 58 mirrors,

- Thickness between 0.47 and 1.07 mm
- Diameter between 306 and 700 mm,
- Masses between 2.35 and 12.30 kg,
- Mirror-Height 600 mm
- Reflecting material: 250 nm Au.

photo: Kayser-Threde

The XMM-Newton Spacecraft (photo: ESA)

Reminder: Semi-Conductors

Semiconductors: separation of valence band and conduction band $\sim 1 \text{ eV}$ (=energy of visible light).

Absorption of photon produces

 $N \sim \frac{h\nu}{E_{\rm gap}}$

(7)

17

electron-hole pairs.

For Si: $E_{gap} = 1.12 \text{ eV}$; 3.61 pairs created per eV photon energy [takes into account collective effects in semiconductor]

Note: band gap small \implies need cooling!

- optical light: \sim 1 electron-hole pair
- X-rays (keV): \sim 1000 electron-hole pairs

Problem: electron-hole pairs recombine immediately in a normal semiconductor \implies in practice, apply voltage to a "pn-junction" to separate electrons and pairs.

Charge Coupled Devices (CCD)

MOS structure with segmented metal layer

CCDs, II

(8)

optical CCDs: mesure intensity \implies need long exposures

X-ray CCDs: measure individual photons \implies need fast readout bright sources: several 1000 photons per second \implies readout in μ s!

In X-rays: spectroscopy possible. Typical resolution reached today:

$$\frac{\Delta E}{E} = 2.355 \sqrt{\frac{3.65 \,\mathrm{eV} \cdot F}{E}}$$

with $F \sim 0.1 \implies \sim 0.4\%$, so much better than proportional counters. (but same $\Delta E/E \propto E^{-1/2}$ proportionality because of Poisson!)

For both optical and X-rays: sensitivity close to 100%

Si based CCDs are currently the best available imaging photon detectors for optical and X-ray applications.

Schematic structure of the XMM-Newton EPIC pn CCD.

Problem: Infalling structure has to pass *through* structure on CCD surface \implies loss of low energy response, also danger through destruction of CCD structure by cosmic rays...

Solution: Irradiate the back side of the chip. Deplete whole CCD-volume, transport electrons to pixels via adequate electric field ("backside illuminated CCDs")

Note: solution works mainly for X-rays

XMM-Newton: EPIC-pn CCD

XMM-Newton: Array of individual backside illuminated CCDs on one Silicon wafer \implies requires extreme care during production

at the time of production one of the most complex Silicon structures ever made (diameter: 65.5 mm)

XMM-Newton: EPIC-pn CCD

Backside of the EPIC-pn camera head

Charge Coupled Devices

XMM-Newton: EPIC-pn CCD

XMM-Newton (EPIC-MOS; Leicester): 7 single CCDs with 600×600 pixels, mounting is adapted to curved focal plane of the Wolter telescope.

Charge Coupled Devices

