Galaktische Schwarze Löcher

High Mass X-Ray Binaries

- Röntgendoppelsterne hoher Masse -

Aufbau

1. Übersicht 2. Entstehung von HMXB 3. Massenfunktion 4. RXTE: Aufbau und Funktion 5. Akkretionsmodelle 6. Die fünf Spektralzustände 7. LMC X-1, LMC X-3, Cyg X-1

1. Übersicht

- Entdeckung von kompakten Objekten in Röntgendoppelsternen möglich durch Massenbestimmung und Akkretionsphänomene
- zur genauen Identifizierung der Eigenschaften eines BH Untersuchung des Ereignishorizonts notwendig
- erste entdeckte Röntgenquelle Sco X-1 (NS) 1962
- Wegbereiter der Untersuchung: Uhuru (1970), RXTE (1995)
- ca. 300 bekannte Röntgendoppelsterne
- BHB (black hole binary) verantwortlich für Phänomene wie jets oder gamma ray bursts

2. Entstehung von HMXB

Das Algol Paradoxon

- Doppelsternsystem im Sternbild Perseus
- blauer Stern in Hauptreihen-Phase, roter Stern auf Weg zu Rotem Riesen
- Paradoxon: blauer Stern massereicher als roter
- Lösung:
 - roter Stern hatte größere Masse, zuerst roter Riese
 - Überschreiten des Lagrange-Punkts führte zur Massenabsorption durch blauen Stern

2. Entstehung von HMXB

- Entstehung des Röntgendoppelsterns
 - Situation wie bei Algol-Konstellation
 - Supernova hinterlässt schwarzes Loch und Stern mit Masse $>\!10 M_{\odot}$
 - Massentransfer durch Sternenwind
 - Massentransfer durch Überqueren der Roche-Grenze (eher LMXB)
 - Potentielle Energie durch Gravitationsfeld so hoch, dass Röntgenstrahlen entstehen können

Herleitung der Massenfunktion (f
ür Kreisbahnen)

Nach Definition des Schwerpunktes:

$$m_1 a_1 = m_2 a_2 = \frac{m_1 m_2}{m_1 + m_2} a$$
 (3.1)

Abb. 2.21. Bewegung der Massen m_1 und m_2 um ihren gemeinsamen Schwerpunkt S. Es ist $m_1a_1 = m_2a_2$

Herleitung der Massenfunktion (f
ür Kreisbahnen)

Gravitations- und Zentrifugalkraft im Gleichgewicht

$$\frac{G m_1 m_2}{a_2} = \frac{m v_1^2}{a_1} = \left(\frac{2\pi}{P}\right)^2 m_1 a_1$$
Aus (3.1) folgt
$$\frac{G m_1 m_2}{a^2} = \frac{4\pi^2}{P^2} m_1 \frac{m_2 a}{m_1 + m_2}$$

$$\frac{G}{4\pi^2} (m_1 + m_2) = \frac{a^3}{P^2} (3.2)$$

Herleitung der Massenfunktion (f
ür Kreisbahnen)

Aus (3.1) und (3.2) folgt

$$(m_1 + m_2) = \frac{4\pi^2}{G} \frac{a_1^3}{P} \frac{(m_1 + m_2)^3}{m_2^3}$$

Durch Umformen:

$$\frac{m_2^3}{(m_1 + m_2)^2} = \frac{4\pi^2}{G} \frac{a_1^3}{P}$$

Massenfunktion f
ür Doppelsternsysteme

$$\frac{m^3 \sin^3(i)}{(m_C + m)^2} = \frac{4\pi^2}{G} \frac{(a_C \sin(i))^3}{P^2} \quad (3.3)$$

a_C: große Halbachse des Begleitsterns
 m_C, *m*: Massen des Begleiters und des BH
 i: Neigungswinkel der Orbitalebene

$$K_C = v_C \sin(i) = \frac{2a_C \pi}{P} \sin(i)$$
 (3.4) Radialgeschwindigkeit
des Begleiters

Massenfunktion f
ür Doppelsternsysteme

Durch Umformen von (3.3)

$$\frac{m\sin^3(i)}{\frac{(m^2+2mm_C+m_C^2)}{m^2}} = \left(\frac{2\pi a_C}{P}\sin(i)\right)^3 \frac{P}{2\pi G}$$

Aus (3.4) folgt die *Massenfunktion*:

$$f(m) = \frac{m \sin^3(i)}{(1 + \frac{m_C}{m})^2} = \frac{K_C^2 P}{2 \pi G}$$

- Anwendung der Massenfunktion
- Periode des Bahnumlaufs und Radialgeschwindigkeit leicht berechenbar
- Massenfunktion gibt Minimum für Masse des BH an
- Verhältnis der Massen durch Messung der Rotationsgeschwindigkeit des Begleitsterns
- Neigungswinkel z.B. durch Lichtkurve bestimmen; Messungen jedoch sehr ungenau
- Massenangaben von BH variieren stark

- Geschichte und Bestandteile
- Röntgensatellit, gestartet am 30.12.1995
- Umlaufbahn 600 km über der Erde
- benannt nach Astronomen Bruno Rossi (1905-1993)
- untersucht schnellveränderliche, hochenergetische Röntgenquellen wie BH, NS oder Röntgenpulsare
- hohe zeitliche Auflösung, hoher Durchsatz, Energiebereich zwischen 2 und 250 keV
- Bestandteile: PCA, HEXTE, ASM

- PCA (Proportional Counter Array)
- Hauptinstrument, deckt weichen Röntgenbereich von 2-60 keV ab
- 5 getrennte Proportionalzähler, Sammelfläche von ca.
 6500 cm²
- Zählrate von ca. 12.800 Zähleinheiten pro Sekunde für Crab Nebula

Energiebereich:	2-60 keV
Energieauflösung:	\sim 18% bei 6 keV
Zeitliche Auflösung:	1 ms
Räumliche Auflösung:	1° FWHM
Detektor:	5 Proportionalzähler
Sammelfläche:	6500 cm ²
Empfindlichkeit:	0.1 mCrab = 136 Photonen/s
Hintergrund:	90 mCrab

- HEXTE (High Energy X-Ray Timing Experiment)
 - ergänzt PCA im höheren Energiebereich, deckt Bereich von 20-250 keV ab
 - zwei kippbare Cluster von jeweils vier Szintillationszählern
 - Zählrate von ca. 290 Zähleinheiten pro Sekunde für Crab Nebula

Energiebereich:	15-250 keV
Energieauflösung:	15% bei 60 keV
Zeitliche Auflösung:	8 μs
Räumliche Auflösung:	1° FWHM
Detektor:	2 Cluster aus 4 NaI/CsI Szintillationszählern
Sammelfläche:	$2 \times 800 \mathrm{cm}^2$
Empfindlichkeit:	1 Crab = 360 1/s pro HEXTE Cluster
Hintergrund:	50 1/s pro HEXTE Cluster

ASM (All-Sky Monitor)

- beobachtet 80% des Himmels in jeder Umdrehung
- Drei rotierbare Weitwinkelkameras, bestehend aus Proportionalzählern
- Entdeckungen durch ASM können mit PCA und HEXTE genauer untersucht werden

Energiebereich:	1.5–12 keV
Zeitliche Auflösung:	80% des Himmels alle 90 Minuten
Räumliche Auflösung:	3'×15'
Kameras:	3 Schattenkameras, jeweils 6×90° Blickfeld
Sammelfläche:	90 cm ²
Detektor:	Xenon-Proportionalzähler, posititionsempfindlich
Empfindlichkeit:	$20 \text{ mCrab}^1 = 1.5 \text{ Photonen/s pro Kamera}$

ALL-SKY MONITOR ASSEMBLY (3 Shadow Cameras)

HEXTE CLUSTERS

5. Akkretionsmodelle

- Das Multicolor Disk (MCD) Modell
- äußerer Radius der Akkretionsscheibe ca. ein Sonnenradius
- Zwischen $0.057 mc^2$ und $0.42 mc^2$ bei ISCO freigesetzt
- Potentielle Energie in allen Radien umgewandelt (Strahlung, Wärme)
- Scheibe Schwarzkörper verschiedener Temperaturen: Multicolor Disk
- Problem: vernachlässigt Drehmoment-freie Grenze am ISCO

5. Akkretionsmodelle

- Das advection-dominated accretion flow Modell (ADAF)
 - Scheibe endet vor ISCO
 - Innenraum gefüllt von Akkretionsstrom, der sich Advektions-dominiert bewegt (ADAF)
 - Großteil des Gases bleibt als thermische Energie im Strom und wird nicht abgestrahlt
 - Energie "verschwindet" hinter Ereignishorizont
 - Strahlungseffizienz und damit Leuchtkraft weitaus geringer als bei MCD Modell

5. Akkretionsmodelle

- Zusammenf
 ührung von MCD und ADAF
- Kombination von MCD und ADAF (einer die Scheibe umgebenden Korona)
- Akkretionsstrom aus zwei Zonen: Scheibe und ADAF
- Ordnung der Spektralzustände nach Akkretionsrate; bei hoher Akkretionsrate, also hoher Leuchtkraft kein ADAF
- Kann vier Spektralzustände gut erklären
- Korona in allen alternativen Modellen wichtiger Bestandteil: verantwortlich f
 ür sehr harte Strahlung, jets, Variabilit
 ät, QPO (quasi-periodic oscillations)

- Emissionszustände von Röntgendoppelsternen
 - BHB (back hole binaries) weisen thermische und harte, nichtthermische Röntgenstrahlung auf, deren Intensität stark variiert
 - thermische Strahlung nach MCD Modell
 - harte Strahlung aus Potengesetzspektrum, entsteht durch Comptonisierung
 - Comptonisierung (auch inverser Compton-Effekt): energiereiche Elektronen geben bei Streuprozess Energie an energieärmere Photonen ab

- Emissionszustände von Röntgendoppelsternen
 - Übergänge zwischen Zuständen, in denen eine oder andere Komponente Leuchtkraft dominiert
 - Gemeinsame Emissionsmechanismen in kurz-(transients) und langlebigen (persistent) BHBs
- quiescent, VH und intermediate Zustand
 - treten im Grunde bei HMXB nicht auf
 - quiescent ("untätig") Zustand:
 - nichtthermische, harte Potenzgesetzstrahlung
 - sehr geringe Leuchtkraft

- quiescent, VH und intermediate Zustand
 - VH (very high) oder SPL (steep power-law) Zustand:
 - thermische und Potenzgesetzkomponenten
 - teils erhebliche Leuchtkraft
 - Spektrum bis 1 MeV
 - Erscheinen von QPO
 - intermediate Zustand:
 - kein eigentlicher Zustand mit klar definierten Eigenschaften
 - verbindet verschiedene Zustände

- HS (*high soft*) oder TD (*thermal dominant*) Zustand
- weiche Röntgenstrahlung (thermische Strahlung) mit Energien von 0.7-1.5 keV, dominiert Spektralbereich bis 10 keV
- hartes Spektralende (Potengesetzspektrum), kleiner Anteil an Gesamtfluss
- (hohe Leuchtkraft)
- Zustand beschreibbar durch MCD Modell
- keine Radioemission

- LH (low hard) oder harter Zustand
- nichtthermisches, hartes Potenzgesetzspektrum dominiert
- (geringere Leuchtkraft als HS im weichen Spektralbereich)
- Spektrum fällt stark ab bei ca. 100 keV
- Akkretionsmodelle: ADAF/Compton Korona
- Erscheinen von starker Strahlung im Radiobereich

• LMC X-1

- entdeckt von Satellit Uhuru im Dezember 1970 in der Großen Magellanschen Wolke
- BHB im HS Zustand
- Begleitstern: Spektraltyp O(7-9)III (heißer Riese hoher Leuchtkraft)
- Massenfunktion $f(m)=0.144 M_{\odot}$
- Masse des BH: $6 M_{\odot} (\pm 2 M_{\odot})$

• LMC X-1

- hohe Leuchtkraft von ca. $2 x 10^{38} erg/s$
- Entfernung $50 \pm 2.3 \, kpc$
- Umlaufzeit 4.2 d
- sehr weiches Spektrum mit Potenzgesetzkomponente
- MCD Modell und Potenzgesetzkomponente durch Comptonisierung in kalter Korona

LMC X-1 Lichtkurven

\$ 3 6 4

蘷

• LMC X-3

- entdeckt von Satellit Uhuru im Januar 1971 in der Großen Magellanschen Wolke
- meist im HS Zustand
- Begleitstern: Spektraltyp B3V (Hauptreihenstern hoher Leuchtkraft)
- Massenfunktion $f(m)=2.3 M_{\odot}$
- Masse des BH: $8 M_{\odot} (\pm 2 M_{\odot})$

• LMC X-3

- hohe Leuchtkraft bis zu $4 \times 10^{38} erg/s$
- Entfernung $50 \pm 2.3 \, kpc$
- Umlaufzeit 1.7 d
- sehr weiches Spektrum, Potenzgesetzkomponente geringer als bei LMC X-1
- MCD Modell und Comptonisierung in kalter Korona

LMC X-3 Lichtkurven

Cygnus X-1

- unter ersten bekannten Röntgenstrahlquellen und erster etablierter BH Kandidat
- entdeckt von Uhuru 1964, Begleitstern vom Spektraltyp O9.7Iab (heißer Überriese hoher Leuchtkraft) erst 1971 identifiziert
- Masse des BH: variiert zwischen $8 13 M_{\odot}$
- normalerweise im LH Zustand, ungewöhnlicher HS Zustand, VH Zustand ohne QPO

Daten zu Cygnus X-1

ic.	Optical	Compact
	Companion	Object
	HDE 226868	CygX-1
Position:		
J2000.0: α , δ	19h58m21:700, +35°12'05!'82	
galactic: $l_{\rm II}, b_{\rm II}$	71:33, +3:07	
Spectral Type	09.7 I ab	
T _{eff} [K]	32000	
$E_{\rm B-V}$	0.95(7)	
$N_{\rm H} [{\rm cm}^{-2}]$	$6(2) \times 10^{21}$	
Distance [kpc]	2.5(3)	
m _v [mag]	8.84	
B _T [mag]	9.828(22)	
V _T [mag]	9.020(17)	
B - V [mag]	+0.81	
U – B [mag]	-0.28	
Luminosity [L _o]	105.4	104
Luminosity [erg/s]	1039	$4 \cdot 10^{37}$
Inclination		35°
a sin i [km]		$5.82(8) \times 10^{6}$
Orbital Period [d]	5.59974(8)	
Major Axis [R _o]	14.6	26.3
v sin i [km/s]	75.6(10)	
Mass Function [M _☉]	0.252(10)	
Mass [M _☉]	18	10
Radius	$17 R_{\odot}$	$30 \mathrm{km}^{\dagger}$
Separation [R _☉]	41	
Mass loss rate [M _☉ /a]	3×10^{-6}	
Wind velocity [km/s]	2100	

- Cygnus X-1, LH Zustand
- Spektrum im Bereich von 3.0-200 keV
- hartes Potenzgesetzspektrum und kleiner Anteil an weicher Strahlung
- Modell: kalte Akkretionsscheibe umgeben von heißer Korona
 - Cygnus X-1, HS Zustand
- nicht thermisches, sondern Potenzgesetzspektrum
- eher spezieller VH Zustand (keine QPO, Temperatur der Scheibe relativ niedrig, vglw. geringe Leuchtkraft)

Cygnus X-1 Zustände

2003.0

O.

Cygnus X-1 Lichtkurven

50600

51000

2000.0

ASN o/s

22

05

26

- Quellen:
 - Literatur:
 - McClintock/Remillard: Black Hole Binaries (1)
 - Begelmann/Rees: Black Holes in the Universe (2)
 - R. Narayan: Black Holes in Astrophysics (3)
 - J. Wilms: X-rays from Galactic Black Holes (4)
 - A. Rau: Reflexion and Comptonization of X-ray Radiation (5)
 - Unsoeld/Baschek: Der neue Kosmos (6)
 - Abbildungen:
 - Seite 5: aus (2), S.6: (6), S.13,14,15: (5), S.16: NASA RTXE Homepage, S.27: (4);(1), S.30: (4);(1), S.32: (4), S.34: (1), S.35: (4);(1)

Laura Bethke

High Mass X-ray binaries

La Villa 2006