Relativistic Fe K α Lines with XMM-Newton

Jörn Wilms (University of Warwick)

http://astro.uni-tuebingen.de/~wilms

Structure

- Why are K α Lines Interesting?
 - Accretion geometry
 - Formation of Fe K α lines
 - Line transfer close to the BH
- There are Broad Lines...
 - MCG-6-30-15
 - Other low-z AGN
- ... Are There?
 - NLSy1s
 - QSO statistics
- Summary and Outlook
 - relativistic lines in high-z sources and XEUS

K α Line Diagnostics

Total observed line profile affected by

- grav. Redshift
- Light bending
- rel. Doppler shift

Testing Relativity in AGN

K α Line Diagnostics

Total observed line profile affected by

- grav. Redshift
- Light bending
- rel. Doppler shift
- emissivity profile

Testing Relativity in AGN

K α Line Diagnostics

Total observed line profile affected by

- grav. Redshift
- Light bending
- rel. Doppler shift
- emissivity profile
- spin of black hole

Testing Relativity in AGN

MCG-6-30-15 (z = 0.008): first AGN with relativistic disk line

Tanaka et al. (1995): time averaged ASCA spectrum: line skew symmetric \implies Schwarzschild black hole.

Iwasawa et al. (1996): "deep minimum state": extremely broad line \implies Kerr Black Hole.

Later confirmed with BeppoSAX (Guainazzi et al., 1999) and RXTE (Lee et al., 1999).

THE UNIVERSITY OF WARWICK

Broad Lines with ASCA

Broad Lines with ASCA

ASCA: Average Seyfert Fe K α profile contains a narrow core and a red and blue wings, but they are much weaker than MCG-6-30-15.

Best case: MCG-6-30-15

Broad Lines with ASCA

pure PL fit

MCG-6-30-15, II

THE

WA

Better modeling of soft excess and reflection \implies Fe K α line has extreme width and skewed profile.

Components of the final fit. \implies Line emissivity is strongly concentrated towards the inner edge of the disk ($\epsilon \propto r^{-4/6}$; cannot be explained with standard α -disk)

(*XMM-Newton*, June 2000, 100 ksec; Wilms et al., 2001)

Broad Lines with XMM

Fabian et al. (2002)

MCG-6-30-15, III

2001 July/August: 315 ksec observation (Fabian et al., 2002)

- Strong narrow line
- broad line clearly present
- \bullet emissivity profile very steep for radii close to $r_{\rm in}$

 $I_{\text{Fe K}\alpha} \propto r^{-5.5\pm0.3}$ for $r < 6.1^{+0.8}_{-0.5}r_{\text{g}}$, $\propto r^{-2.7\pm0.1}$ outside that; Fabian & Vaughan (2003); confirms Wilms et al. (2001)

Other Sources

(Iwasawa, Miniutti & Fabian, 2004, Figs. 3,4)

Line profile variability in NGC 3516 \implies Corotating flare? (7 $r_g \leq r \leq 16r_g$) If interpretation is pushed further, gives $M \sim (1 \dots 5) \times 10^7 M_{\odot}$.

Broad Lines with XMM

(Porquet & Reeves, 2003, Fig. 3) *XMM* data from 2001

(Matt et al., 2005, Fig. 1) comparison 2003 vs. 2001 data

Q0056-363 (broad line radio-quiet quasar, $L_X > 10^{45}$ erg s⁻¹): Fe K α has FWHM 24500 km s⁻¹, EW 275 eV

Q0056–363 is highest luminosity radio-quiet QSO with broad Fe K α line.

(Longinotti et al., 2003)

IRAS 13349+2436:

- Model either 2 broad emission lines or
- relativistic line from Fe XXIII/XXIV plus narrow absorption feature

Line shape can be rather complex!

Other examples include *blueshifted* lines, e.g., in Mkn 205 (Reeves et al., 2001) or Mkn 766.

Broad Lines with XMM

NLSy1: Strong absorption or a relativistic line from a reflection dominated spectrum both describe the data equally well!

Similar results have been found by Pounds et al. in a variety of sources...

But: strong absorption models contradict observations where data >10 keV available.

Debated Cases

Narrow Lines

The majority of Seyfert galaxies and QSOs do *not* show evidence for broad Fe K α lines!

(NGC 4258; Reynolds et al. 2004)

Narrow Lines

Narrow Lines

WA

The majority of Seyfert galaxies and QSOs do *not* show evidence for broad Fe K α lines!

statistics for PG-QSO: 20/38 show Fe K α line, of these 3 have broad line (Jiménez-Bailón et al., 2005)

Bianchi et al. (2004, Fig. 4) [Sample of Seyferts with simultaneous *BeppoSAX* observations.]

Narrow Lines

Conclusions, I

Relativistically broadened Fe K α lines clearly do exist in a variety of different AGN

We need to rethink the details of the accretion process and the accretion geometry close to black hole:

• Energy extraction for extremely broad lines?

Coupling BH – disk, structure of the inner disk (no torque condition?, structure of the infall region,...)

• "Lamppost model"?

(Petrucci & Henri, 1997; Martocchia, Matt & Karas, 2002; Miniutti & Fabian, 2004)

- \implies X-rays focused down from the jet base?
- \implies If true, is continuum Comptonization?

Fender et al. (2004), Markoff, Nowak & Wilms (2005) for galactic BHs

Conclusions

Conclusions, II

To be successful, models will have to consider:

- Broad Fe K α lines are rare:
 - Truncated Disks?

e.g., invoked by Zdziarski et al. (1999) to explain $\Omega/2\pi$ - Γ -correlation

- Disk ionization (but needs fine tuning!)
- And what about the Unified Model?

Is the viewing angle really edge on?

- Narrow lines are ubiquitous:
 - Are they formed in the torus?

but narrow lines often have FWHM \sim 4000–7000 km s⁻¹ \implies too large for torus! (expect \sim 760 km s⁻¹(M_8/r_{pc})^{1/2})

- Do they originate in the BLR or an ionized disk?

...and we should not forget the observational constraints: Strong Fe K α variability \implies we need a larger collecting area (XEUS!)

Conclusions

The Future 1.4 50 type-1 AGN $10^{-7} \text{ph/cm}^2 \text{s keV}$ data/mode 1.2 1.0 0.8 type-2 AGN 2 5 Energy [keV] data/mode] 1.2 (Comastri, Brusa & Civano, 2004, Chandra) CXO J123716.7+621733 (CDF-N; *z* = 1.146) 1.0 Broad Fe K α lines already present in high-z universe! 0.8 0.5 2 5 10 Average Fe line for the Lockman hole AGN rest frame energy [keV] (Streblyanska et al., 2005) WAR CK Conclusions

3

Bianchi, S., Matt, G., Balestra, I., Guainazz, M., & Perola, G. C., 2004, A&A, 422, 65 Boller, T., Tanaka, Y., Fabian, A., Brandt, W. N., Gallo, L., Anabuki, N., Haba, Y., & Vaughan, S., 2003, MNRAS, 343, L89

*