

4

Charge Coupled Devices

Charge Coupled Devices

2

Charge Coupled Devices

ശ

ω

Charge Coupled Devices

-

Charge Coupled Devices

10

ESA

3-66

XMM-Newton: EPIC-MOS CCD,

KNNVEPA

eiceste

XMM-Newton (EPIC-MOS; Leicester): 7 single CCDs with 600 \times 600 pixels, mounting is adapted to curved focal plane of the Wolter telescope.

Charge Coupled Devices

14

Charge Coupled Devices

Imaging above 10keV

Principle of image reconstruction: correlate mask image with detector plane image.

Define the "Response" of pixel x, y via

$R(x,y) = C(x,y) - \langle C \rangle \tag{3.20}$

where C(x,y): measured count rate in detector plane, and $\langle C \rangle$ mean count rate of detector plane.

Compare R(x,y) to response expected if there were a source at position α,δ on the sky using a cross correlation function

$$\mathsf{CCF}(\alpha,\delta) = \iint_{\forall x,y} R(x,y) R(\alpha,\delta;x,y) \, \mathrm{d}x \, \mathrm{d}y$$

(3.21) (3.21) CCF has peak if good match with real source found.

Then subtract off this source and repeat ("IROS"-method, "Iterative Removal of Sources")

ISDC/Univ. Geneva

Mask used in COMIS-TTM experiment on Mir

Random Masks

(MURA)

INTEGRAL: Launched 17 Oct 2002 from Baikonur on a Proton rocket.

3-77

GACE/U. Valencia

IBIS: coded mask and a two-layered detector: ISGRI: CdTe solid-state detector (16000 pixels; 20 keV-few MeV) above a 4000 pixel CsI array (called PICsIT, harder energies).

Imaging above 10keV

ω

X-Ray Data Analysis

where

X-Ray Data Analysis

က

