

al.): First discovery of an extrasolar X-ray source.

The moon was not detected in the X-rays (first detection by ROSAT in the 1990s).

Introduction

Intermezzo: The name of the game

X-ray binaries are named in arcane ways. Typical nomenclatures:

- Constellation + X + number, earliest discoveries, e.g., Her X-1, Cyg X-3, but also LMC X-3.
- Name in the Ariel catalogue, e.g., A 0535+26
- Name in 4th Uhuru catalogue, e.g., 4U 1957+115
- ROSAT all sky survey, e.g., RX J1940.1-1025 (and analogously for Beppo-SAX [SAX xxx], EXOSAT [EXO xxx], Ginga [GS xxx], Granat [GRS xxx], GRO [GRO xxx])

See SIMBAD for explanations (http://cdsweb.u-strasbg.fr/).

IAAT

Introduction

3–3

Tananbaum, 1973

First clue regarding the nature of the X-ray sources: detection of 1.24 s pulsations from Her X-1 \implies Pulsating X-ray binaries as accreting, rotating neutron stars.

Introduction

Mass Determination, I

Mass determination from velocity curve. Kepler's 3rd law:

$$\frac{(a_{\rm X} + a_{\rm S})^3}{P_{\rm orb}^2} = \frac{G(M_{\rm X} + M_{\rm S})}{4\pi^2}$$
(3.1)

where X: X-ray object, S: normal star, and a_i : distance from center of mass ($M_X a_X = M_S a_S$).

Observed velocity (projected onto sky) gives a_j :

$$K_j = \frac{2\pi a_i \sin i}{P} \quad \text{since} \quad v = 2\pi r/P \tag{3.2}$$

(for j = X, s), where i is the inclination. Since

$$(a_{\rm X} + a_{\rm S})^3 = \left(a_{\rm X} + a_{\rm X}\frac{M_{\rm X}}{M_{\rm S}}\right)^3 = \frac{a_{\rm X}^3(M_{\rm X} + M_{\rm S})^3}{M_{\rm S}^3}$$
 (3.3)

Kepler's law gives after some algebra

$$f_{\rm X}(M_{\rm X}, M_{\rm S}) = \frac{M_{\rm X}^3 \sin^3 i}{(M_{\rm S} + M_{\rm X})^2} = \frac{PK_{\rm S}^3}{2\pi G}$$
(3.5)

the mass function (minimum mass of compact object). More precise mass only possible when determination of i possible (e.g., eclipses).

3-6

(Stelzer, 1997, Diplomarbeit AIT, Abb. 6.14) Pulse arrival times for Her X-1 change sinusoidally as a result of the orbital motion \Longrightarrow Determination of K and $a \sin i$.

Introduction

Mass Determination, III

(Pottschmidt et al., 2001)

Determination of the RV of the black hole in Cyg X-1 (Observatoire de Haute Provence, 1998 August [1.52m, Aurelie]) using the H β line (4861Å).

3 - 8

3 - 9Masses of XRBs Neutron Stars **Black Holes** XTE J2123-058 Cen X-4 Cen X-3 LMC X-4 SMC X-1 Vela X-1 Her X-1 4U 1538-52 Cyg X-1 LMC X-3 **Radio Pulsars** A 0620-00 GS 2000+25 V 404Cyg GS 1124-68 GRO J1655-40 GRO J0422+32 GRS 1009-45 H 1705-25 XTE J1118+480 4U 1543-47 V4641 Sgr XTE J1859+226 XTE J1550-564 0.1 10 100 1 Compact Object Mass in Solar Masses Kalemci, priv. comm.) Almost all measured neutron star masses are consistent with the canonical value of 1.4 $M_{\odot}!$

Introduction

Mass/Orbits

Table 2.6 X-ray/Optical Orbital Parameters of X-ray Binaries

	Source	Type ^a	Porb(d)	axsin i(lt-s)	$f_x(M/M_{\odot})$	$K_c(km s^{-1})$	$f_c(M/M_{\odot})^b$	$M_{\chi}(M_{\odot})$	References
	A. Neutron Sta	r Primai	ies ^c						
1	LMC X-4	н	1.41	26.31 ± 0.03^{d}	9.86 ± 0.04	37.9±2.4	0.008	1.38 ± 0.25	[246,272]
2	Cen X-3	н	2.09	39.664 ± 0.007	15.386 ± 0.001	24±6	0.003	1.06(+0.56, -0.53)	
3	4U1538-52	н	3.73	52.8 ± 1.8	11.4 ± 1.2	19.8±1.1	0.003	1.3±0.2	[284,394]
4	SMC X-1	Н	3.89	53.46 ± 0.05	10.84 ± 0.03			1.6 ± 0.1	[387,395]
5	Vela X-1	н	8.96	113.0±0.4	19.29 ± 0.21	21.8 ± 1.2	0.010	1.77±0.21	
6	Her X-1	L	1.70	13.1831 ± 0.0003	0.8513 ± 0.0001	83±3	0.10	0.98±0.12	[116]
7	4U1907+09	Н	8.38	83±3	8.8±1.0				[84]
8	4U0115+63	Н	24.3	140.13 ± 0.16	5.007 ± 0.019				
9	2S1553-54	Н	30.6	164±22	5.0 ± 2.1				
10	V0332+53	Н	34.3	48±4	0.101 ± 0.025				
11	GX301-2	Н	41.5	371.2 ± 3.3	31.9 ± 0.8				[404]
12	EXO2030+375	H	46 ^e	240±15 ^e	7.1±1.3 ^e				[364]
13	4U1626-67	L	0.029	<0.010	$< 1.3 \times 10^{-6}$				[273]
14	4U1700-37	Н	3.41			18±3	0.002	1.8±0.4	[199]
15	Cen X-4	L	0.63			146 ± 12	0.20		[95,308]
	B. Black Hole	Candidat	es						
16	LMC X-3	Н	1.70			235 ± 11	2.3 ± 0.3	$>7^{f}$	[91]
17	LMC X-1	Н	4.23			68±8	0.14±0.05		[224]
18	Cyg X-1	н	5.60			74.6±0.13	0.241±0.013	>7 ^f	[156]
19	A0620-00	L	0.32			442 ± 4	2.90 ± 0.08	>3.4 ^g	[306,307]
20	Nova Mus '91	L	0.43			409 ± 18	3.07 ± 0.40	>2.9 ^g	[393]
21	GS2023+338	L	6.47			210.6 ± 4	6.26 ± 0.31	$>5.6^{g}$	[54]

 $\frac{Footnotes}{^{a}}$ H = HMXB and L = LMXB.

b For entries 1-15 the errors are large and asymmetric, and are not given. They can be computed easily using the expression for $f_c(M)$ given in the The tent of the errors are large and asymmetric, and are not given. They can be computed easily using the expression for $I_c(M)$ text and the values tabulated here for P_{orb} , K_c , and ΔK_c . ⁶ Data in Part A are adopted from Tables 3 and 4 in [342], and from the supplementary references cited above. ^d August 1989 Ginga observations; see [272] for a summary of the results of two other recent X-ray timing observations of LMC X-4. ^e Parameters for Model III [364].

^f Model dependent (see text). ^g Firm 2σ limits set by the value of the mass function (see text).

(van Paradijs & McClintock, 1995, Tab. 2.6)

Reminder: Accretion

Spherically symmetric accretion: maximum luminosity is Eddington luminosity,

$$L_{\rm Edd} = \frac{4\pi G M_{\rm X} (m_{\rm p} + m_{\rm e}) c}{\sigma_{\rm T}}$$
$$= 3.23 \times 10^4 \left(\frac{M_{\rm X}}{M_{\odot}}\right) L_{\odot} (3.6)$$

 $(L_{\odot} = 3.9 \times 10^{33} \,\mathrm{erg \, s^{-1}}).$ Efficiency η of accretion process is defined by

$$L = \eta \dot{M} c^2 \tag{3.7}$$

where \dot{M} mass accretion rate. For accretion onto a neutron star,

$$\eta = \frac{GM}{Rc^2} \tag{3.8}$$

For typical X-ray luminosities of $\sim 10^{39}\,{\rm erg\,s^{-1}}$ and $\eta\sim$ 0.1, one finds typical mass transfer rates of

$$\dot{M} = 10^{-9} \dots 10^{-7} M_{\odot} a^{-1}$$
 (3.10)

Mass Transfer

Wilms 1998

Assume both stars are point masses on circular orbits \implies Effective potential in *co-rotating coordinate system*: sum of the gravitational potentials and centrifugal potential:

$$\phi(\mathbf{r}) = -\frac{GM_1}{|\mathbf{r} - \mathbf{r}_1|} - \frac{GM_2}{|\mathbf{r} - \mathbf{r}_2|} - \frac{1}{2}(\omega \times \mathbf{r})^2$$
(3.12)

the Roche potential.

Stellar evolution: donor state eventually fills Roche lobe \implies Roche Lobe Overflow.

(Dennerl, Dissertation MPE)

Roche Lobe Overfbw: Matter streams over Lagrange point L_1 from donor onto compact object. Preservation of angular momentum: Formation of accretion disk. Typical objects: Her X-1.

Mass Transfer

Mass Transfer

Stellar Wind Accretion, I

Early type stars (spectral type O, B, mass $M \gtrsim 10 M_{\odot}$) have strong winds, driven by radiation pressure in absorption lines. Typical Mass loss rates $\dot{M} = 10^{-7...-5}$. Velocity profile parameterizable as

 $\mathbf{v}(r) \approx \mathbf{v}_{\infty} (\mathbf{1} - R_{\star}/r)^{\beta}$ with $\beta \sim 0.5 \dots 1.0$ (3.13)

and end-velocity $\mathrm{v}_\infty\approx 1000\,\mathrm{km\,s^{-1}}.$

A fraction of the wind $(10^{-4}...10^{-3})$ can accrete onto compact object: Bondi-Hoyle accretion.

Principal components for wind-accretion:

- Ionized Strömgren region (wind ionized by X-rays from compact object).
- Accretion shock around compact object (orbital velocity typically > velocity of sound!).
- Ionization wake where material is overdense.

Possibly formation of small disk around NS.

Typical Objects: Vela X-1

3–17 Stellar Wind Accretion, III

(Blondin (1994), Fig. 4) Realistic hydrodynamical computations are difficult (asymmetry of accretion process, ionization of wind, large range of length-scales involved,...).

Mass Transfer

3–18

Stellar Wind Accretion, IV

(Blondin, priv. comm.)

Velocity field from HMXB accretion (simulation for LMC X-4).

(Kretschmar 1996, Dissertation AIT, Abb. 2.6) Some early type stars (O9–B2) have very high rotation rates \implies Formation of disk-like stellar

wind around equator region. Line emission from disk: Be phenomenon.

Collision of compact object with disk results in irregular X-ray outbursts.

Exact physics not understood at all.

Typical Objects: A0535+26.

LMXB: Properties

Source	Period (hrs)	X-ray type	Visual magnitude	Optical modulation	Companion star
4U1820-30	0.19	Burster		_	White dwarf
4U1626-67	0.7	Burster	19	Yes	Degenerate
A1916-05	0.83	Burster	21	Yes	Degenerate
X1323-619	2.9	Burster, dipper	-	-	•
MXB1636-536	3.8	Burster	17	Yes	
EXO0748-676	3.8	Burster, dipper, transient	17		
4U1254-69	3.9	Burster, dipper	19	Yes	
4U1728-16	4.2	ADC ^a ?	17	Yes	
X1755-338	4.4	Dipper	18.5	Yes	
MXB1735-444	4.6	Burster	17	Yes	
Cyg X-3	4.8		(IR)	Yes(IR)	
4U2129+47	5.2	ADC	16	Yes	
2A1822-371	5.6	ADC	16	Yes	
MXB1659-29	7.2	Burster, dipper	19		
A0620-00	7.3	Transient	12-19	Yes	Κ
LMC X-2	8.2?		19	Yes	
4U2127+11	8.5	ADC	16	Yes	
4U1956+11	9.3		18	Yes	
CAL 87	10.2	ADC	19	Yes	
GX339-4	14.8	Multi-state	15-21	Yes	
Sco X-1	19.2	Prototype LMXB	12-14	Yes	
4U1624-49	21	Dipper	_	-	
CAL 83	25	ADC	17	Yes	
Her X-1	40.8	Dipper	15	Yes	F
GS2023+338	155	Transient	12-19	Yes	K0
2S0921-630	216	ADC	16	Yes	
Cyg X-2	235	Dipper	15	Yes	F giant

Table 8.1. Properties of low-mass X-ray binaries

^a ADC = accretion disc corona

Charles & Seward, 1995, Tab. 8.1

(Stelzer et al. (1999))

Temporal evolution of the absorbing column $N_{\rm H}$ with time over a pre-eclipse dip of Her X-1:

Substructures as spray from impact of accretion stream onto disk.

(Kuster et al., 1999)

Turn on of Her X-1 as observed with RXTE. Absorbing column $N_{\rm H}$ decreases with time \Longrightarrow Turn on caused by motion of covering accretion disk out of line of sight \Longrightarrow Precessing warped disk.

Schandl (1996)

What is the physical cause for the warping? Torque perpendicular to plane of symmetry of disk.

Possible causes:

- Tidal torques (ruled out by precession frequency of disk).
- Wind due to X-ray heating of disk (Schandl, 1996),
- Radiation pressure (Maloney, Begelman & Pringle, 1996)

Evolution of pulse profiles, I

(Scott, priv. comm.) Evolution of profile during main on. Pulse profile does change

Low Mass X-ray Binaries

3 - 29

(Bai, 1981)

Evolution of pulse profile as evidence for covering: Begin of turn on: covering at outer radii, end of turn on: covering at inner radii (Note different scale heights!).

NASA GSFC

X-ray bursts from EXO 2030+375 as seen with EXOSAT.

Interpretation: Thermonuclear explosions on NS surface.

(Lewin et al., 1995, Fig. 4.10)

Peak flux and total fluence of bursts are correlated with distance to the next burst. *Explanation*: Accretion of hydrogen onto surface \implies hydrogen burns quietly into helium (thickness of layer $\sim 1 \text{ m}$) \implies thermonuclear flash when critical mass reached

3 - 33**Rapid Burster** 24-minute snapshots from 8 orbits on March 2/3, 1976 100 s Lellhul M Mullille 111M - k s k s k b Junhun munitie Anthe Artikrik Lunder unnuluun here he hall hall a har man

(Lewin et al., 1995, Fig. 4.19)

Bursting of the "Rapid Burster" 1730–-335: Type I and Type II bursts.

Type II bursts: magnetospheric gate model: B-fi eld blocks accretion until gas pressure > magnetic pressure \Longrightarrow BOOM.

(Kommers, 1996, priv. comm.)

Before 1995 December 2: X-ray bursts and pulsations cannot occur in the same object. Then: GRO J1744-28 the bursting pulsar (see

http://space.mit.edu/home/rutledge/TRANS/trans.html). Pulsations with 2 Hz and type II bursts. Burst rate: \sim 20/hour, then decreasing to 1/hour. Source temporarily brightest X-ray source in the sky (several Crab), last outburst in June 1996. Orbit \sim 2 d.

Physics not understood yet.

QPOs

Define the discrete Fourier transform as

$$X_j = \sum_{k=0}^{N-1} x_k e^{2\pi i j k/N} \quad \text{where } j \in [-(N/2) \dots (N/2) - 1]$$
(3.14)

for the frequencies

$$\omega_j = 2\pi\nu_j = 2\pi j/(N\Delta t) \tag{3.15}$$

($\nu_{N/2} = 1/(2\Delta t)$ = Nyquist frequency). The power spectral density is

$$P_j = A|X_j|^2$$
 where $j \in [0...N/2]$ (3.16)

A: Normalization constant. Often used:

- $A_{\text{Leahy}} = 2\Delta t^2 / N_{\text{ph}} = 2\Delta t / X_0$ Leahy normalization
- $A_{\text{Miyamoto}} = 2\Delta t^2 / (N_{\text{ph}} \langle x \rangle) = A_{\text{Leahy}} / \langle x \rangle$ Miyamoto normalization

• $A_{\text{math}} = 1/N$ (standard mathematical normalization). where N_{ph} : number of photons observed.

"The kHz QPO are the most important scientific result to date of RXTE".

(http://heasarc.gsfc.nasa.gov/docs/ xte/Greatest_Hits/khz.qpo.html)

RXTE PCA: $\Delta E =$ 2-25 keV, $A_{\rm eff} =$ 5000 cm², $\Delta t =$ 1 μ s

van der Klis et al., 1996, IAUC 6319 Wijnands & van der Klis, 1999, *ApJ*, 514, 939

IAAT

- >3 characteristic frequencies:
 "LF QPOs" (ν_{LF}): 0.1 100 Hz, many types
 "kHz Twin Peaks" (ν₁, ν₂): 200 1400 Hz
- "real" kHz QPOs only for neutron star binaries, mostly persistent LMXBs (but: Microquasars!),
 ~ 20 kHz QPO sources are known, mostly showing double peaks
- Keplerian orbit frequency:

$$\nu_{\rm orb} = \left(\frac{GM}{4\pi^2 R_{\rm orb}^3}\right)^{1/2} \approx 1200 \,\mathrm{Hz} \left(\frac{R_{\rm orb}}{15 \,\mathrm{km}}\right)^{-3/2} m_{1.4}^{1/2}$$

• innermost stable circular orbit (ISCO), Schwarzschild geometry:

 $R_{\rm ISCO} = 6GM/c^2 \approx 12.5m_{1.4}\,{\rm km}$

```
\implies maximum stable frequency:
```

 $u_{\rm ISCO} pprox ({\rm 1580}/m_{
m 1.4})\,{
m Hz}$

• spin corrections can be several 10%

beat: preferred Keplerian orbit & spin frequency

Magnetospheric BFM:

- preferred radius = Alfvén radius
- orbiting clump ($\nu_{Alfvén}$) modulated by B-field (ν_{spin})
- \implies can explain LF QPOs, 5 50 Hz

Sonic Point BFM:

- preferred radius = where radial infbw velocity becomes supersonic, near ISCO
- orbiting clump ($\nu_{sonic} > \nu_{spin}$) is causing bright footpoint near surface, footpoint: upper kHz QPO, $\nu_2 = \nu_{sonic}$
- clumps are irradiated with $\nu_{spin} \longrightarrow$ footpoint emission is modulated with beat between ν_{sonic} and ν_{spin} , footpoint modulation: lower kHz QPO,

 $\nu_1 = \nu_{\text{beat}}$

 \Rightarrow can explain twin kHz QPOs but ...

Miller et al., 1998, ApJ, 508, 791

Varying frequency separation between the kHz QPOs of different sources:

Properties & problems of the SPBFM:

- needs surface
 not valid for BHC sources
- Keplerian motion inside *r*Alfvén
- r_{sonic} is depending on M \implies varying ν_2 can be explained
- $\Delta \nu = \nu_2 \nu_1$, constant, can be $< \nu_{spin}$ \implies varying $\Delta \nu$ cannot easily be explained
- predicts additional frequencies (differing from precession model)

Relativistic Precession Model GR: free-particle orbits show characteristic frequencies

- disk is disrupted near ISCO, forming blobs
- blob orbits are inclined and eccentric
- orbit frequency: upper kHz QPO, ν_2
- periastron precession: lower kHz QPO, ν_1
- relativistic frame dragging →
 "wobble of the orbital plane":
 nodal precession (Lense-Thirring)

 $\nu_{\rm LF} = \mathbf{2} \times \nu_{\rm nod}$

 $\nu_{\rm nod} = 8\pi^2 I \ \nu_2^2 \nu_{\rm spin} / c^2 M,$ (*I*: moment of inertia)

Stella & Vietri, 1998, *ApJ*, 492, L59 Vietri & Stella, 1998, *ApJ*, 503, 350

Varying frequency separation between the kHz QPOs of different sources:

Stella & Vietri, 1999, Phys. Rev. Lett., 82, 17

Properties & problems of the RPM:

- does not need surface \implies also valid for BHC sources
- can explain $\Delta \nu$ (more or less)
- how to disrupt the disk?
 how to create compact clumps?
 how to maintain tilted orbits?
- how to create the flux modulations?
- other frequencies could be more important

Promises:

- constrain M and R (via kHz QPOs)
 - \Rightarrow constrain EOS for neutron stars
- constrain spin ("holy grail", LMXB/ms radio pulsar evolution?!)
- constrain B-fi eld (via LF QPOs)
- observe GR effects

Diffi culties:

- observations (varying Δν_{kHz}, ν-correlations) triggered evolution of many different models (> 12)
- no individual model does address all issues (i.e, generation of flux modulation, ...)
- models predict different ν_{spin} and M, e.g., BFM: $\nu_{spin} = 250 - 350 \text{ Hz}$ RPM: $\nu_{spin} = 300 - 900 \text{ Hz}$
- what about "surface models"?
 big question:
 do BHCs show the same behavior as neutron star XRBs?

3 - 51

HMXB: System Parameters, I

Table 1.	. The	orbital	periods	of	'HMXBs
----------	-------	---------	---------	----	--------

Source	Alternative name	Orbital period (d)	Properties ^a	Reference
X2030+407	Cyg X-3	0.2	WR	1,2,3
X0532-664	LMC X-4	1.4	SG, P	4,5,6
X0538–641	LMC X-3	1.7	Be, BHC	7
X1119–603	Cen X-3	2.1	SG, P	8
X1700-377	HD153919	3.41	SG	9
X1538-522	QV Nor	3.73	SG, P	10,11
X0115-737	SMC X-1	3.89	SG, P	12
X0540–697	LMC X-1	4.22	SG, BHC	13
X1956+350	Cyg X–1	5.6	SG, BHC	14
X1907+097		8.38	B, P	15
X0900-403	Vela X-1	8.96	SG, P	16
X1657-415		10.4	SG?, P	17
X0114+650	V662 Cas	11.6	SG	18
X1909+048	SS433	13.1	SG, J	19
X0535-668	A0538-66	16.7	Be, T, P	20
X0115+634	V635 Cas	24.3	Be, T, P	21
X0236+610	LS I +61 303	26.45	Be	22
X1553-542		30.6	Be?, T, P	23
X0331+530	BQ Cam	34.25	Be, T, P	24
X1223-624	GX301-2	41.5	SG, P	25,26,27
X2030+375		45–47	Be, T, P	28
X0535+262	HD245770	111	Be, T, P	29
X1258-613	GX304-1	133?	Be, P	30
X1145-619	Hen 715	187.5	Be, P	31

^aThe source properties are indicated by 'SG' - supergiant, 'Be' - Be star, 'P' - pulsar, 'BHC' -black-hole candidate, 'T' - transient, 'WR' - Wolf-Rayet, 'J' - Jets. References: ¹Parsignault *et al.* 1972; ²Sanford & Hawkins 1972; ³van Kerkwijk *et al.* 1992; ⁴Li *et al.* 1978; ⁵White 1978; ⁶Chevalier & Ilovaisky 1977; ⁷Cowley *et al.* 1983; ⁸Schreier *et al.* 1972b; ⁹Jones, Forman and Liller 1973; ¹⁰Becker *et al.* 1977; ¹¹Davison, Watson and Pye 1977; ¹²Schreier *et al.* 1972b; ¹³Hutchings *et al.* 1983; ¹⁴Webster & Murdin 1972; ¹⁵Marshall & Ricketts 1980; ¹⁶Ulmer *et al.* 1972; ¹⁷Chakrabarty *et al.* 1993; ¹⁸Crampton *et al.* 1985; ¹⁹Crampton *et al.* 1980; ²⁰Johnston, *et al.* 1980; ²¹Rappaport *et al.* 1978; ²²Taylor & Gregory 1982; ²³Kelley *et al.* 1983b; ²⁴Stella *et al.* 1985; ²⁵Watson *et al.* 1982; ²⁶Kelley *et al.* 1980; ²⁷White *et al.* 1978; ²⁸Parmar *et al.* 1980; ²⁹Priedhorsky & Terrell 1983a; ³⁰Priedhorsky & Terrell 1983b; ³¹Watson *et al.* 1981.

White et al., 1995, Tab. 1.3

3-52

HMXB: System Parameters, II

Source	Alternative	Pulse period	Orbital period	Туре	Reference
	name	(s)	(d)		
X0535-668	A0538-66	0.069	16.7	HMXB	1
X0115–737	SMC X-1	0.71	3.89	HMXB	2
X1656+354	Her X-1	1.24	1.7	LMXB	3
X0115+634	V635 Cas	3.6	24.3	HMXB	4
X0332+530	BQ Cam	4.4	34.25	HMXB	5
X1119–603	Cen X-3	4.8	2.1	HMXB	6
X1048-594		6.4		?	7
X2259+587		7.0		LMXB	8
X1627–673		7.7	0.029	LMXB	9
X1553-542		9.3	30.6	HMXB	10
X0834–430	GR0834-430	12.2	-	?	11
X0532-664	LMC X-4	13.5	1.4	HMXB	12
X1417–624		17.6		HMXB	13
X1843+009		29.5		?	14
X1657—415		38	10.4	HMXB	15
X2030+375		42	45.6	HMXB	16
X2138+568	Cep X-4	66		?	17
X1836–045		81		?	14
X1843–024		95		?	14,34
X0535+262		104	111	HMXB	18
X1833–076	Sct X-1	111		?	19
X1728–247	GX1+4	114	304?	LMXB	20,21,22
X0900-403	Vela X-1	283	8.96	HMXB	23
X1258–613	GX 304-1	272	133?	HMXB	24,25
X1145–614		298		HMXB	26,27
X1145–619		292	187.5	HMXB	26,27
X1118–615	A1118–61	405		HMXB	28
X1722-363		413		?	29
X1907+097		438	8.38	HMXB	30
X1538–522	QV Nor	529	3.73	HMXB	31
X1223-624	GX301-2	696	41.5	HMXB	32
X0352-309	X Per	835		HMXB	33

Table 1.4. Pulse periods from X-ray binaries

References: ¹Skinner *et al.* 1982; ²Lucke *et al.* 1976; ³Tananbaum *et al.* 1972; ⁴Cominsky *et al.* 1978; ⁵Stella *et al.* 1985; ⁶Giacconi *et al.* 1971; ⁷Corbet & Day 1990; ⁸Gregory & Fahlman 1980; ⁹Rappaport *et al.* 1977; ¹⁰Kelley *et al.* 1983b; ¹¹Grebenev & Sunyaev 1991; ¹²Kelley *et al.* 1983a; ¹³Kelley *et al.* 1981; ¹⁴Koyama *et al.* 1990a; ¹⁵White & Pravdo 1979; ¹⁶Parmar *et al.* 1989d; ¹⁷Koyama *et al.* 1991a; ¹⁸Rosenberg *et al.* 1975; ¹⁹Koyama *et al.* 1991b; ²⁰Lewin *et al.* 1977; ²⁵McClintock *et al.* 1977; ²⁶White *et al.* 1978b; ²⁷Lamb *et al.* 1980; ²⁸Ives *et al.* 1975; ²⁹Tawara *et al.* 1989; ³⁰Makishima *et al.* 1984; ³¹Davison *et al.* 1977; ³²White *et al.* 1976a; ³³White *et al.* 1970b.

White et al., 1995, Tab. 1.4

Violent X-ray absorption on all timescales in the wind accreting system 4U 1700–377.

Charles & Seward, Fig. 7.12

Magnetospheric Accretion, I

So far: ignored fact that central neutron star has (strong) magnetic field ($\sim 10^{12}$ G). Far-field:

$$B(r) = \left(\frac{R_{\star}}{r}\right)^3 B_{\rm p} \quad \text{hence} \quad P_{\rm mag} = \frac{B^2}{8\pi} = \left(\frac{R}{r}\right)^6 B_{\rm p}^2 \quad (3.17)$$

On the other hand, the accreting material has a ram-pressure

$$P_{\rm ram} = \rho v^2$$
 or $P_{\rm ram} = \frac{\dot{M}}{4\pi r^2} \left(\frac{2GM}{r}\right)^{1/2}$ (3.18)

assuming free fall (v = $(2GM/r)^{1/2}$) and spherical symmetry ($\dot{M} = 4\pi r^2 \rho$ v).

For $P_{mag} > P_{ram}$, magnetic field dominates \implies plasma couples to magnetic field lines at the Alfvén radius

$$r_{\rm mag} = \left(\frac{8\pi^2}{G}\right)^{1/7} \left(\frac{R_{\star}^{12}B_{\rm p}^4}{M\dot{M}^2}\right)^{1/7}$$
(3.19)

For $R_{\star} = 10$ km, $B = 10^{12}$ G, $M = 1.4 M_{\odot}$, and $\dot{M} = 10^{-8} M_{\odot}/a$, $r_{\rm mag} \sim 3500$ km.

For typical NS parameters, the accretion close to the NS is completely dominated by the magnetic field.

High Mass X-ray Binaries

3 - 55

Coupling between magnetic field and accretion disk: accretion disk excerts torque onto NS:

$$I\dot{\omega} = \dot{M}r_{\rm mag}^2 \Omega_{\rm K}(r_{\rm mag}) \tag{3.20}$$

where $I = 2/5 \cdot MR_{\star}^2$ moment of inertia of NS, and $\Omega_{\rm K}(r_{\rm mag} = (GM/r_{\rm mag}^3)^{1/2}$ the Kepler frequency at $r_{\rm mag}$. The luminosity of the source is

$$L = \frac{GMM}{r_{\text{mag}}} \tag{3.21}$$

After some tedious algebra (Gosh & Lamb, 1979), one obtains

$$\frac{P}{P} \propto -\left(L^{6/7}P\right) \tag{3.22}$$

(Rappaport & Joss, 1977)

Observations and prediction of Gosh & Lamb magnetospheric accretion model agree.

(Bildsten et al., 1998)

Real place of matter coupling to *B*-fi eld is *not* r_{mag} . Result are changes of the neutron star spin: Predominantly, a spin up (spin period *shortens* with time) is observed, but sometimes the period change is erratic or dominated by a spin down (spin period *increases* with time).

Whether a spin up or spin down occurs depends on whether matter couples to the magnetic field inside or outside of $r_{\rm mag}.$

Landau Levels

Important physical process due to strong fi eld at NS poles: Quantization of electron energies perpendicular to the magnetic fi eld lines (Landau levels):

$$E_n = m_{\rm e}c^2 \sqrt{1 + \left(\frac{p_{\parallel}}{m_{\rm e}c}\right)^2 + 2n\frac{B}{B_{\rm crit}}} \tag{3.24}$$

where p_{\parallel} : momentum of electron parallel to B -fi eld, n the major quantum number, and

(*critical magnetic field*, $E_{cyc} = m_e c^2$). For $B \ll B_{crit}$ distance between Landau levels:

$$E_{\rm cyc} = E_{n+1} - E_n = \frac{\hbar e}{m_e c} B = 11.6 \, \text{keV} \left(\frac{B}{10^{12} \,\text{G}}\right)$$
(3.27)

 $(12 - B_{12}$ -rule).

3–65

CRFs: Summary

Object	P_{puls}	P_{orb}	E_{cyc}	Companion
	(sec)	(days)	(keV)	
Her X-1	1.24	1.7	38	A9-B
4U0115+63	3.6	24.31	12,23,36?	Be
X0331+53	4.37	34.25	28.5,56?	Be (BQ Cam)
Cen X-3	4.8	2.09	27.1	O6.5II (V779 Cen)
X2259+586	6.98	?	5?,10?	single?
4U1626-67	7.66	1.7	38	KZ TrA
LMC X-4	13.5	1.408	19-23?	O7IV
GS1843+00	29.5	?	18-22	?
GS2137+57	66.2	?	29	Be?
A0535+26	105	110.58	55?,110	Be
Vela X-1	283	8.96	25?,58	B0.5lb
4U1907+09	438	8.38	19	B2 III-IV
4U1538-52	530	3.73	20, 40	BOI
GX 301-2	690	41.5	40	B1.2Ia (Wray 977)

(Heindl, 1999, priv. comm.)

Stars end their life as one of three different kinds of compact objects:

white dwarf: $\rho \sim 10^{5...6} \,\mathrm{g \, cm^{-3}}$, $R \sim R_{\mathrm{earth}}$, Equilibrium between gravitation and pressure of ([relativistically] degenerate) electrons $M < 1.44 \, M_{\odot}$ (Chandrasekhar-Limit).

neutron star: $\rho \sim 10^{13} \dots 10^{16} \text{ g cm}^{-3}$, $R \sim 10 \text{ km}$, at this density β -decay (p + e⁻ \rightarrow n), i.e., star consists mainly of neutrons 1.44 $M_{\odot} < M \leq 3 \dots 4 M_{\odot}$ (Oppenheimer-Volkoff Limit).

black hole: above OV-Limit: no stable configuration known \Longrightarrow star collapses at infinitum \Longrightarrow black hole. horizon at $R_{\rm S} = 2GM/c^2 = 3(M/M_{\odot})$ km (Schwarzschild radius), $M \gtrsim 4 M_{\odot}$.

Black Hole Candidates

Observation: determine mass. Since inclination i usually not known, can only determine mass function

$$\mathsf{MF} = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2} = \frac{a_1^3 \sin^3 i}{U^2}$$
(3.28)

(lower limit for M_2)

Most black holes have MF \gtrsim 2 M_{\odot} , there are a few with MF > 5 $M_{\odot}.$

since also MF sometimes not determined: classification as black hole *candidate* (BHC).

First BHC discovered in 1965, identified in 1972 (Cygnus X-1). End of 1970s: LMC X-3 and LMC X-1.

Today >30 BHC known, 3 are "safe" BH.

Black Hole Candidates

BHC can be both, HMXB and LMXB:

Soft X-ray Transients: Low mass X-ray Binaries with a BH. Transient behavior, outbursts due to triggered mass transfer/accretion. Most BHC.
Persistent Black Hole Candidates: High Mass X-ray Binaries, always seen, about five sources known (Cyg X-1, LMC X-1, LMC X-3,...)
Microquasars: Most probably LMXBs, strong radio emitters with jets

3-69 Black Holes Orosz, 2001, priv. comm. Sun Mercury GRS 1915+105 XTE J1118+480 XTE J1859+226 SAX J1819.3-2525 GRS 1009-45 GRS 1124-683 GS 2000+25 H1705-250 GRO J1655-40 A0620-00 GR0 J0422+32 4U 1543-47 companion star accretion disk and GS 2023+338 XTE J1550-564 black hole

Black Hole Candidates

astrophysics of BHC: study of accretion processes

Simpler than NS/WD: no surface, no magnetic fields.

more difficult than NS/WD: large accretion rates, modification of X-ray spectrum by hot gas,...

we have good observational material, a rough physical understanding, many (basic) questions are open.

Relativistic effects not too important, they are more crucial in active galactic nuclei

Black Hole Candidates

Transient Black Hole Candidates

light curve during outburst:

- fast raise, exponential decay (FRED)
- secondary refare, about 50–80 d after primary maximum
- third hump after a few hundred days

3 - 72

1970–1995: Single pointed observations:

- Some sources exhibit thermal X-ray spectrum ⇒ accretion disk!
- Many sources exhibit power law spectrum
- presence of Fe Kα line emission at 6.4 keV ⇒ "cold material" (disk?)

Because of this: "states of black holes": high/soft state: accretion disk dominates. low/hard state: power law dominates.

<section-header><section-header>

cross section through "sandwich corona". *left:* particle density, *right:* B-Field (Stone, priv. comm.)

Comptonizing medium is probably of magnetohydrodynamical origin

Possible mechanism: Magnetorotational Instability (MRI, aka Balbus-Hawley Instability; possibly MRI is also source of disk viscosity [α parameter...]).

Hard State, III

The location of the Comptonizing medium (accretion disk corona) is unclear:

Sandwich geometry (Haardt & Maraschi, 1993)

Advection dominated accretion flow (ADAF) Narayan (1996), Esin et al. (1997, 2000)

"Sphere+Disk geometry" Dove et al. (1997), Zdziarski et al. (1998)

ADAF fit for GX 339-4, observed radio flux is 7 mJy at 843 MHz (Wilms et al., 2000)

- Sandwich-Geometry not self consistent, as corona is cooled too efficiently (Dove et al., 1997).
- ADAF in many sources not possible since synchrotron peak too strong (e.g., Wilms et al., 2000).
- Sphere+Disk explains spectrum but not short term variability (z.B. Nowak et al., 1999)...

 \implies accretion geometry is not understood!

more insight through systematical, year long observing campaigns instead of "Snapshots", possibly with the Rossi X-ray Timing Explorer (RXTE, NASA, since 1996).

```
Tübingen campaigns
```

```
Cyg X-1: 1997–today (RXTE, radio, optical; Pottschmidt et al., 2000, 2001)
```

LMC X-1: 1997/1998 (RXTE; Wilms et al., 2001)

LMC X-3: 1997–1999, 2001–heute (RXTE; Wilms et al. 2001), 1990–1995 (optical [Amsterdam]; Brocksopp et al., 2001).

```
GX 339-4: 1998 (RXTE; Wilms et al. 2001), 2000 (XMM-Newton, BeppoSAX)
```


variability described as "red noise" with characteristic frequencies that are perhaps related to accretion disk oscillations (Diskoseismology).

11

Pottschmidt et al., 2000

The fourier frequency dependent "Lag" changes only *during* state changes.

during hard and soft state, lags are identical \implies origin of lag independent of accretion disk corona.

Evolution of lag between two energy bands. Lag is significantly larger during state changes \implies change of source geometry?

Microquasar: BHC with strong radio jets;

"superluminal motion"

Three sources known:

- GRS 1915+105 (discovered 27 July 1994)
- GRO J1655-40
- XTE J1550-564

Microquasars, II

March/April 1994 (VLA, Mirabel et al., 1994) ballistical motion of

clumps: apparent velocity:

- $(0.65 \pm 0.08)c$ und $(1.25 \pm 0.15)c$, i.e. Superluminal Motion!
- before 1994: only known from AGN (z.B. 3C273)
- Theory: Projection effect

Measured fluxes consistent with relativistic Doppler boosting

light emitted at position B and B' with time difference δt :

Observer A measures time difference:

$$\Delta t = \delta t (\mathbf{1} - \beta \cos \theta)$$
 (3.29)

Observer A measures transversal velocity:

$$\beta_{\rm T} = \frac{v \sin \theta}{c(1 - \beta \cos \theta)} = \frac{\beta \sin \theta}{1 - \beta \cos \theta}$$
(3.30)
$$\gamma = (1 - \beta^2)^{-1/2}, \beta = v/c \text{ with } \beta_{\rm T}^- = 0.65 \text{ and}$$

$$\beta_{\rm T}^+ = 1.25:$$

$$\beta = (0.92 \pm 0.08)c$$

 $\theta = (\mathbf{70} \pm \mathbf{2})^{\circ}$

maximum transversal velocity: $\beta_{\rm T}^{\rm max} = \beta \gamma \approx \gamma$

GRS 1915+105

RXTE ASM lightcurve Although transient, outburst behavior very different from soft X-ray transients.

3–92

Short term variability is also weird: Brightness Sputters, Large-Amplitude Oscillations (Greiner et al., 1996)

Microquasars

6

Belloni et al., 1997

Possible explanation via fast emptying out of accretion disk (accretion disk instability on viscous timescale?), slow refill via \dot{M} .

- X-Rays (PCA): 50 s QPO, Dip with short flare
- IR (UKIRT): Flare starts after short X-ray flare
- Radio (VLA): Flare starts 16 min after IR Flare (adiabatic expansion; effect of λ dependency of optical thickness for synchrotron radiation)
- ⇒ Hypothesis (Mirabel et al., 1998): Inner disk empties out, material released as adiabatically expanding plasma cloud that emits synchrotron radiation ("Minijet")

Bibliography

- Blondin, J. M., 1994, ApJ, 435, 756
- Giacconi, R., Gursky, H., Kellogg, E., Levinson, R., Schreier, E., & Tananbaum, H., 1973, ApJ, 184, 227
- Kreykenbohm, I., Kretschmar, P., Wilms, J., Staubert, R., Kendziorra, E., Gruber, D., & Rothschild, R., 1999, A&A, 341, 141
- Maloney, P. R., Begelman, M. C., & Pringle, J. E., 1996, ApJ, 472, 582
- Schandl, S., 1996, A&A, 307, 95
- Stelzer, B., Wilms, J., Staubert, R., Gruber, D., & Rothschild, R., 1999, A&A, 342, 736