

Effect of intermediate medium of Hydrogen column density $N_{\rm H}$ on observed X-ray spectrum.

$$I_{\rm obs}(E) = e^{-\sigma_{\rm ISM}(E) N_{\rm H}} I_{\rm source}(E)$$

where

 $N_{\rm H}$: Hydrogen column density (atoms cm⁻²) $I_{\rm source}$: emitted X-ray spectrum $I_{\rm obs}$: observed X-ray spectrum

Dust

Previous Formulations

Five important historical papers:

Brown & Gould (1970): First real computations using o.k. cross sections.

Fireman (1974): Include effect of iron, first attempt to formulate influence of dust.

Ride & Walker (1977): Dust and phases of ISM. Largely ignored.

Morrison & McCammon (1983): The *de facto* standard (XSPEC: model wabs ...). No dust, fixed abundances.

Bałucińska-Church & McCammon (1992): Better cross sections, based on Henke et al. (1982), newer (and variable) abundances. No dust or molecules.

Unfortunately often ignored (XSPEC: model phabs ...).

 \implies Critical reevaluation of computation of σ_{ISM} necessary.

 $\sigma_{\rm ISM} =$ sum over contributions of astrophysically relevant elements:

$$\sigma_{\rm ISM} = \sigma_{\rm gas} + \sigma_{\rm grains} + \sigma_{\rm molecules}$$

Gas and Molecules:

$$\sigma_{\text{gas, molecules}} = \sum_{Z,I} A_Z \cdot a_{Z,I} \cdot (\mathbf{1} - \beta_{Z,I}) \cdot \sigma_{\text{bf}}(Z,I)$$

where

Z nuclear charge

 A_Z abundance in number wrt H

 $a_{Z,I}$ ionization fraction

 $1 - \beta_{Z,I}$ depletion factor

 $\sigma_{\rm bf}(Z,I)$ photoionization cross section Dust:

$$\sigma_{\text{grains}} = \sum_{Z,I} A_Z \cdot \beta_{Z,I} f_{Z,I} \cdot \sigma_{\mathsf{bf}}(Z,I)$$

where

 $f_{Z,I}$ self blanketing factor

Dust

Photoionization cross sections

In X-rays: photon energy \gg binding energy of outer shell electrons \implies relativistic QM effects become important.

 \implies Inner shell processes \implies K- and L-shell absorption.

Result of approximate computations: For

 $E \gg E_{\text{thresh}}$:

$\sigma_{\rm bf} \propto E^{-3.5}$

Experimental measurements are rare.

Compilations of cross sections:

TOPBASE (Seaton et al.): no relativistic effects.

Henke tables (Henke et al., 1982, 1993): combination of experimental and theoretical data.

- Verner data (Verner & Yakovlev, 1995): relativistic computations, edge energies adjusted to measured values.
- **EPDL 97 (Cullen et al., 1997):** compilation of measured and theoretical data; not evaluated yet due to export restrictions.

4 - 5

Comparison between four different theories for the He cross section.

For He: Adopt Yan, Sadeghpour & Dalgarno (1998) values.

Comparison between the recommended values from Henke et al. (1993) and the theory of Verner & Yakovlev (1995).

Adopt Verner & Yakovlev values.

Dust

А

Strong influence of state of absorbing material on absorptivity \implies Edge energies of Henke et al. (1993) are influenced by solid state effects!

Comparison between classical H cross section and a modern computation of the H_2 cross section.

Molecular effects contribute to absorption cross section: $\sigma_{\rm bf}({\rm H_2}) \approx 2.85 \sigma_{\rm bf}({\rm H})$.

Abundances, I

Basic paradigm during last 50 years of astronomy: abundances are more or less identical throughout the universe.

→ Measurement possible by looking at solar and meteoritic abundances (Anders & Grevesse, 1989).

Recent evidence: ISM abundances are subsolar, dependent on line of sight (Snow & Witt, 1995; Mathis, 1996).

X-ray astronomical work needs the ability to change abundances relative to the adopted (solar) abundances.

Adopted abundances: solar after Anders & Grevesse (1989) and Grevesse & Anders (1989), for F and Cl use meteoritic values as recommended by Shull (1993).

Odd-Even Z variability due to stability of nuclei with paired protons.

4-14

Dust, III

Interstellar reddening curve after Fitzpatrick (1999).

2175 Å bump generally interpreted as evidence for absorption through dust.

Mathis, Rumpl & Nordsieck (1977) (MRN): graphite and silicate grains, power law size distribution, $P(a) \propto a^{-3.5}$, radii ranging from 0.025 μ m to 0.25 μ m, density $\sim 1 \,\mathrm{g \, cm^{-3}}$.

motivation favor porous grains composed of silicates, graphite, and oxides (Mathis & Whiffen, 1989; Fogel & Leung, 1998)

 \implies Density of grains is smaller than 1 g cm⁻³.

Dust

Energy dependent shielding factor for grains of sizes 0.1 $\mu \rm m$ and 0.3 $\mu \rm m.$

X-rays: Metals are "depleted" in grains \implies less metals in gas phase.

Outer skin of grains absorbs most X-rays \implies do not see inner part of grains \implies "shielding" Computations:

Grains do not have influence above \sim 3 keV.

 $\sigma_{\rm ISM} \cdot E^{\rm 3}$ as function of energy for pure gas and for gas with grains with MRN distribution.

Note comparably small influence of grains.

SN1994d (HST WFPC)

Supernovae have luminosities comparable to whole galaxies: $\sim 10^{51}$ erg/s in light, 100× more in neutrinos.

(Filippenko, 1997, Fig. 1); t: time after maximum light; τ : time after core collapse; P Cyg profi les give $v \sim 10000 \,\mathrm{km \, s^{-1}}$

Rough classification (Minkowski, 1941): **Type I:** no hydrogen in spectra; subtypes Ia, Ib, Ic **Type II:** hydrogen present, subtypes II-L, II-P

Note: pre 1985 subtypes Ia, Ib had different definition of today \Longrightarrow beware when reading older texts.

⁽Filippenko, 1997, Fig. 3)

Light curves of SNe I all very similar, SNe II have much more scatter.

SNe II-L ("linear") resemble SNe I SNe II-P ("plateau") have const. brightness to within 1 mag for extended period of time.

Models

Clue on origin from supernova statistics:

- SNe II, Ib, Ic: never seen in ellipticals; rarely in S0; generally associated with spiral arms and H II regions.
- \implies progenitor of SNe II, Ib, Ic: massive stars (\gtrsim 8 M_{\odot}) \implies core collapse
 - SNe Ia: all types of galaxies, no preference for arms.
- \Rightarrow progenitor of SNe Ia: accreting carbon-oxygen white dwarfs, undergoing thermonuclear runaway \Rightarrow lightcurves all very similar \Rightarrow cosmological standard candles!

SN 1987A

1987 February 23: Explosion of blue supergiant Sandulaek -69°202; closest supernova since Kepler (1604)

courtesy AAO

courtesy ESO

(Suntzeff et al., 1991, Fig. 2)

UVOIR (UV, optical, infrared) light curve resembles SNe II-P, although peak much lower than typical (progenitor was blue supergiant, not red supergiant).

Exponential decay of bolometric luminosity after first few $100 \text{ days} \implies \text{Radioactive decay}$

(Sunyaev; 1991)

During SN explosion: formation of ⁵⁶Ni. Then radioactive decay:

⁵⁶Ni
$$\xrightarrow{\text{EC}} {}^{56}$$
Co $\xrightarrow{81\%\text{EC},19\%\beta^+} {}^{56}$ Fe

Decay: emission of $\gamma\text{-ray}$ lines

Optically thick medium \implies downscattering and

thermalization \implies observed continuum spectrum.

1987: Mir-HEXE: Observed X-ray spectrum agrees with radioactive decay picture.

4-26 SN 1987A Т Т Т 0.8 August 1 1987 through May 28 1988 Source Live-time = 3.3×10^6 sec 0.6 MeV⁻¹ 0.4 Counts sec⁻¹ 0.2 0.0 -0.2 2.0 1.5 2.5 3.0 0.5 1.0 3.5 Energy (MeV)

Leising and Share (1990)

Solar Maximum Mission: high resolution γ -ray mission; direct spectroscopy of 847, 1238, 2599, and 3250 keV lines from ⁵⁶Co decay

SMM finds about 0.07 M_{\odot} in cobalt.

(Co+Ti; Suntzeff et al., 1991, Fig. 9)

Late time light curve due to radioactive decay of Cobalt.

- Day 125–700: dominated by decay of ⁵⁶Co
- Around day 1000: radioactive decay of ⁵⁷Co starts to dominate (e-folding time: 391 d).

Optical light curve well described by enhanced 57 Co/ 56 Co ratio (\sim 2.5–4 \times solar) plus 56 Ni and 44 Ti (Suntzeff et al., 1991).

after Hasinger, Aschenbach & Trümper (1996, Fig. 3)

 \sim 1000 d after explosion: the X-ray luminosity of SN 1987A started to brighten again ($L_{\rm X} \propto t^2$).

Most likely explanation: interaction between SN blast wave and interstellar medium (mainly progenitor stellar wind) \implies Supernova remnant!

Introduction, I

After Supernova Explosion: Formation of Supernova Remnant (SNR)

Explosion energy goes into kinetic energy of ejecta:

$$E = \frac{1}{2}Mv_{\rm ej}^2 \tag{4.1}$$

Therefore

1

$$v_{\rm ej} = 10^4 \,\mathrm{km}\,\mathrm{s}^{-1} E_{51}^{1/2} \left(\frac{M_{\rm ej}}{M_\odot}\right)^{-1/2}$$
 (4.2)

$$\sim 10^{-2} \,\mathrm{pc}\,\mathrm{yr}^{-1} E_{51}^{1/2} \left(\frac{M_{\mathrm{ej}}}{M_{\odot}}\right)^{-1/2}$$
 (4.3)

where $E_{51} = E/10^{51} \text{ erg s}^{-1}$. \implies Fast material smashes into stationary ISM \implies shock!

Typical temperatures via thermalization:

$$E \sim NkT = \frac{M}{m_{p}}kT \implies T \sim 10^{9} \text{ K}$$
 (4.4)
 \implies X-ray emission!

Introduction, II

Simplifi ed computation if fluid approximation possible, i.e.,

mean free path \ll size of system

Two possible candidates:

- 1. Ionization length scale
- 2. Magnetic length scale

Ionization length scale: Need ~50 eV to collisionally ionize hydrogen; cross section: $\sigma_{ion} \sim a_0^2 \sim 10^{-17} \text{ cm}^2$. For protons: $10^4 \text{ km s}^{-1} = \sim 2 \text{ MeV}$; assume $n_{\text{H}} = 1 \text{ cm}^{-3}$

 \implies typical stopping length:

$$l_{\rm ion} \sim \frac{\rm Energy}{\rm E \, Loss/Ionization} \cdot {\rm mfp \, btw \, collisions}$$
 (4.5)

$$\sim \left(\frac{2 \text{ MeV}}{50 \text{ eV}}\right) \frac{1}{n_{\text{H}}\sigma_{\text{ion}}} \sim 10^3 \text{ pc}$$
 (4.6)

 $\implies l_{\text{ion}}$ is too large

Magnetic length scale given by Larmor radius ($B \sim 3 \, \mu G$)

$$R_{\rm L} = \frac{qB}{mc} \sim 2 \times 10^{10} \, {\rm cm} \sim 10^{-8} \, {\rm pc}$$
 (4.7)

 \implies $R_{\rm L}$ is small enough

Use fluid approximation to study SNR evolution!

Introduction, III

Generally, four phases of SNR evolution:

- Free expansion : velocity very large with respect to ambient medium, swipe up large fraction of the medium
- Sedov phase : Expansion driven by conversion of internal energy into kinetic energy
- Snowplough phase : energy loss due to radiative cooling becomes important, shock becomes isothermal, shell moves with constant radial momentum ("snow plough").
- **Merging phase** : speed of expansion < speed of sound, SNR dissolves into ISM
- Will now look at these phases in detail.

Free Expansion, I

Free Expansion: Material moves with uniform velocity, $r \propto t$.

Possible until sweptup mass \sim ejected mass:

$$M_{
m sweptup} \sim rac{4\pi}{3}
ho_{
m ISM} r_f^3 = M_{
m ej}$$
 (4.8)

(assuming constant density around SN) Therefore

$$r = \left(\frac{3}{4\pi}\right)^{1/3} M^{1/3} \rho^{-1/3}$$
(4.9)
= $2 \operatorname{pc} \left(\frac{M_{ej}}{M_{\odot}}\right)^{1/3} \left(\frac{\rho_{\mathrm{ISM}}}{2 \times 10^{-24} \,\mathrm{g \, cm^{-3}}}\right)^{-1/3}$ (4.10)

Corresponding time scale

$$t \sim \frac{r}{v_{\rm ej}} \sim 200 \,\mathrm{yr} \left(\frac{M_{\rm ej}}{M_\odot}\right)^{5/6} E_{51}^{-1/2} \rho_{24}^{-1/3}$$
 (4.11)

(using Eq. 4.2).

SN 1987A is only close remnant in free expansion phase.

Supernova 1987A

PRC99-04 • Space Telescope Science Institute • Hubble Heritage Team (AURA/STScI/NASA)

Two features currently seen: central ring due to impact of blast wave on circumster material and outer rings, possibly due to ionization of material illuminated by SN b Material possibly from bipolar outfbw during blue supergiant phase (fast blue wind colliding with slower RG wind); material ejected \sim 20000 years before explose

(Burrows et al., 2000, Fig. 1)

Ring $(1.66'' \times 1.21'')$ around SN 1987A from shock heating at point of first contact between blast wave and equatorial ring from stellar wind of progenitor. Mainly ionized C and N.

Bright spots brightened fi rst (1997) \implies "bullets" within faster than normal blast wave; 2000: many more spots \implies rest of blast wave has reached location of ring.

Sedov Phase, I

After free expansion: further energy for expansion comes from internal energy of system, such that total energy stays roughly constant (adiabatic expansion) \implies Sedov phase or blast wave phase.

Energy constancy translates to

$$E \sim \underbrace{\frac{1}{2} \left(\frac{4\pi}{3}\right) \rho r^3 v^2}_{\text{kinetic energy}} + \underbrace{A \left(\rho v^2\right) \left(\frac{4\pi}{3}\right) r^3}_{\text{internal energy}}$$
(4.12)
 $\propto \rho r^3 v^2 \stackrel{=}{\stackrel{!}{!}} \text{const.}$ (4.13)

where A is a constant. Solving for v = dr/dt:

$$\frac{\mathrm{d}r}{\mathrm{d}t} \propto \left(\frac{E}{\rho}\right)^{1/2} r^{-3/2} \tag{4.14}$$

Separation of variables gives

$$r \propto \left(\frac{E}{\rho}\right)^{1/5} t^{2/5}$$
 (4.15)

Detailed theory (Padmanabhan, Vol. 1, Sec. 8.12) shows that the constant of proportionality is \sim 1 for $\gamma = 5/3$.

Note that these equations assume $\rho = \text{const.}$, which is not true since remnant expands; still, good enough for order of magnitude computations.

Sedov Phase, II

Inserting numbers into Eq. (4.15) gives:

Radius of the shell:

$$r \approx \left(\frac{E}{\rho}\right)^{1/5} t^{2/5} \sim 0.3 \,\mathrm{pc} E_{51}^{1/5} n_{\mathrm{H}}^{-1/5} t_{\mathrm{yr}}^{2/5}$$
 (4.16)

Velocity of the shell:

$$v = \dot{r} = \frac{2}{5} \left(\frac{E}{\rho}\right)^{1/5} t^{-3/5}$$
 (4.17)

Solving Eq. (4.16) for t and inserting

$$= \frac{2}{5} \left(\frac{E}{\rho}\right)^{1/5} r^{-3/2} \left(\frac{E}{\rho}\right)^{3/10}$$
(4.18)

$$\sim 5000 \,\mathrm{km}\,\mathrm{s}^{-1} \left(rac{r}{2\,\mathrm{pc}}
ight)^{-3/2} E_{51}^{1/2} n_\mathrm{H}^{-1/2}$$
 (4.19)

Temperature of the shell follows from assuming thermalization, i.e., $m_pv^2/2 = NkT \iff T \propto v^2$):

$$T \sim 6 \times 10^8 \,\mathrm{K} \left(\frac{r}{2 \,\mathrm{pc}}\right)^{-3} E_{51} n_\mathrm{H}^{-1}$$
 (4.20)

$$\sim 10^{6} \,\mathrm{K} \, E_{51}^{2/5} n_{\mathrm{H}}^{-2/5} \left(\frac{t}{3 \times 10^{4} \,\mathrm{yr}}\right)^{-6/5}$$
 (4.21)

Measuring r, v, and T allows to determine age of supernova remnant.

Mainly bremsstrahlung emission with $T \sim 10^6 \text{ K} \Longrightarrow \text{X-ray}$ emission!

E0102-72.3; blue: X-rays (Chandra), red: radio (ATCA), green: optical (HST)

Best example for contact discontinuity: E0102–72.3:

forward shock bright in radio emissionreverse shock bright in X-ray emissionOptical emission only visible as optical fi laments.

Sedov Phase, V

ROSAT HRI; courtesy J. Hughes

Tycho's supernova remnant: 1572 November 11, first naked eye supernova for a long time, now very difficult to see in optical.

Brahe, De Stella Nova

4-39

Sedov Phase, VI

Tycho's SNR, VLA, 0.33 MHz (diameter 7 pc; courtesy F. Lazio)

Tycho is also bright in the radio.

B-fi eld frozen into plasma \implies shock produces high *B*-fi eld regions \implies emission of synchrotron radiation

XMM EPIC spectrum of Tycho's SNR (Decourchelle et al., 2001, Fig. 1a)

X-ray spectrum is line dominated \implies line emission from shock excited plasma.

Mass estimate from X-ray spectroscopy and radio: $1...2 M_{\odot} \Longrightarrow \sim 1.4 M_{\odot}$?!? \implies remnant of type I explosion?

Sedov Phase, VIII

Tycho; XMM-Newton EPIC; Decourchelle et al., 2001

X-ray spectroscopy allows mapping of element distribution in remnant \implies structure of progenitor.

4-42

Cas A Chandra fi rst light

Cassiopeia A: Young remnant (\sim 1670), no optical explosion observed

Mass of ejected material 10–15 $M_{\odot} \Longrightarrow$ possibly type II?

Type II are also fainter, explaining why explosion has not been reported.

2000: Chandra discovers point-source in center \implies neutron star \implies confirming type II assumption!

Supernova Remnants

4 - 43

4-44

Sedov Phase, X

A Chandra portfolio of Cas A:

broad band

Silicon

Calcium

Iron

Sedov Phase, XI

Cygnus Loop (diameter $\sim 2.5^{\circ}$; optical; Wallis/Provin)

Cygnus loop/Veil nebula: end of Sedov phase ($r\sim$ 20 pc, $v\sim$ 115 km s⁻¹, estimated age $t\sim$ 20000 yr)

Interior (<18 pc) empty of material (swept free by progenitor wind).

4-45

light shocked ISM gas on top of dense gas; deceleration of gas as effective gravity \implies Rayleigh Taylor instability!

Fit to observations: inner temperature: 3×10^6 K, initial energy release $\sim 3 \times 10^{50}$ erg, $100 M_{\odot}$ within shell.

Note breakup in southern part of nebula; low density region in ISM?

Sedov Phase, XIV

optical/X-ray composite of Cygnus loop (Hester et al., 1994) blue: X-ray (ROSAT); red: H α ; green: O III.

Optical fi laments due to compressed interstellar clouds.

Supernova Remnants

4-48

Snow-plough Phase, I

End of Sedov phase when energy cannot be conserved.

Shock continues with its intrinsic momentum, "ploughing" through ISM \implies snowplough phase or radiative phase.

Major source of energy loss: Radiative cooling.

Here: collisional excitation and radiative recombination \implies coronal plasma (see chapter 2).

During snowplough phase, strong optical line emission, mainly from filaments in rim of SNR with temperature $T \sim 10^4$ K; only weak X-ray emission

Cooling function Λ :

$$n_{\rm H}^2 \Lambda(T) \approx 10^{-22} \,{\rm erg}\,{\rm cm}^3 \,{\rm s}^{-1} n_{\rm H}^2 T_6^{-1/2}$$
 (4.22)

cooling timescale:

$$t_{\rm cool} \approx \frac{nkT}{n^2 \Lambda(T)} \sim 4 \times 10^4 \, {\rm yr} \, \frac{T_6^{3/2}}{n_{\rm H}}$$
 (4.23)

But for the Sedov phase:

$$t_{\rm Sedov} = 3 \times 10^4 \,{
m yr} \, T_6^{-5/6} E_{51}^{1/3} n_{\rm H}^{-1/3}$$
 (4.24)

Eq. (4.24) follows from solving Eq. (4.21) for t

Snow-plough Phase, II

Snowplough starts when $t_{cool} < t_{Sedov}$,

$$T_6 < E^{1/7} n_{\rm H}^{2/7} \tag{4.25}$$

4 - 50

Expressing this in terms of the velocity:

$$v < 200 \,\mathrm{km}\,\mathrm{s}^{-1}\,(E_{51}n_{\mathrm{H}}^{2})^{1/14}$$
 (4.26)

almost independent from E and n.

Evolution during snowplough phase dominated by momentum conservation:

$$\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\left(\frac{4\pi}{3} \right) \rho r^3 \dot{r} \right) = 0 \tag{4.27}$$

Remember: most mass is already in the shell!

Thus, if snowplough starts at radius r_0 and velocity v_0 ,

$$\frac{4\pi}{3}\rho r^{3}\dot{r} = \frac{4\pi}{3}\rho r_{0}^{3}v_{0} \iff r^{3}\dot{r} = r_{0}^{3}v_{0} \qquad (4.28)$$

Separation of variables gives

$$r(t) = r_0 \left(1 + \frac{4v_0}{r_0} (t - t_0) \right)^{1/4} \propto t^{1/4}$$
 (4.29)

with $v_{0}\sim 200\,\mathrm{km\,s^{-1}}$,

$$v \sim 200 \,\mathrm{km}\,\mathrm{s}^{-1}\,\left(rac{t}{3 imes 10^4\,\mathrm{yr}}
ight)^{-3/4}$$
 (4.30)

Radio map of G55.0+0.3 (1420 MHz, age $\sim 10^6$ years; Matthews et al., 1998)

Once speed drops to sound velocity of ISM,

$$c_{s,\rm ISM} \sim 10 \dots 100 \, {\rm km \, s^{-1}}$$
 (4.31)

supernova remnant starts to dissolve \Longrightarrow

Merging Phase

Elements produced during supernova mix into ISM ("chemical enrichment").

4–52

Bibliography

- Anders, E., & Grevesse, N., 1989, Geochim. Cosmochim. Acta, 53, 197
- Bałucińska-Church, M., & McCammon, D., 1992, ApJ, 400, 699
- Brown, R. L., & Gould, R. J., 1970, Phys. Rev. D, 1, 2252
- Burrows, D. N., et al., 2000, ApJ, 543, L149
- Filippenko, A. V., 1997, ARA&A, 35, 309
- Fireman, E. L., 1974, ApJ, 187, 57
- Fitzpatrick, E. L., 1999, PASP, 111, 63
- Fogel, M. E., & Leung, C. M., 1998, ApJ, 501, 175
- Hasinger, G., Aschenbach, B., & Trümper, J., 1996, A&A, 312, L9
- Mathis, J. S., 1996, ApJ, 472, 643
- Mathis, J. S., Rumpl, W., & Nordsieck, K. H., 1977, ApJ, 217, 425
- Mathis, J. S., & Whiffen, G., 1989, ApJ, 341, 808
- Morrison, R., & McCammon, D., 1983, ApJ, 270, 119
- Nicolosi, F., Jannitti, E., & Tondello, G., 1991, J. Physique IV, C1, 89
- Ride, S. K., & Walker, Jr., A. B. C., 1977, A&A, 61, 339
- Shull, J., 1993, Physica Scripta, T47, 165
- Snow, T. P., & Witt, A. N., 1995, Sci, 270, 1455
- Suntzeff, N. B., Phillips, M. M., Depoy, D. L., Elias, J. H., & Walker, A. R., 1991, AJ, 102, 1118
- Yan, M., Sadeghpour, H. R., & Dalgarno, A., 1998, ApJ, 496, 1044