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Introduction
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Effect of intermediate medium of Hydrogen

column density NH on observed X-ray spectrum.

Iobs(E) = e−σISM(E)NH Isource(E)

where

NH: Hydrogen column density (atoms cm−2)

Isource: emitted X-ray spectrum

Iobs: observed X-ray spectrum
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Previous Formulations

Five important historical papers:
Brown & Gould (1970): First real computations using

o.k. cross sections.

Fireman (1974): Include effect of iron, first attempt to

formulate influence of dust.

Ride & Walker (1977): Dust and phases of ISM.

Largely ignored.

Morrison & McCammon (1983): The de facto

standard (XSPEC: ��������� �
	���
 . . . ). No dust, fixed

abundances.

Bałucińska-Church & McCammon (1992): Better

cross sections, based on Henke et al. (1982), newer (and

variable) abundances. No dust or molecules.

Unfortunately often ignored (XSPEC: ��������� ����	���
 . . . ).

=⇒ Critical reevaluation of computation of σISM

necessary.
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Computation

σISM = sum over contributions of astrophysically

relevant elements:

σISM = σgas + σgrains + σmolecules

Gas and Molecules:

σgas, molecules =
∑

Z,I

AZ · aZ,I · (1−βZ,I) ·σbf(Z, I)

where

Z nuclear charge

AZ abundance in number wrt H

aZ,I ionization fraction

1 − βZ,I depletion factor

σbf(Z, I) photoionization cross section

Dust:

σgrains =
∑

Z,I

AZ · βZ,IfZ,I · σbf(Z, I)

where

fZ,I self blanketing factor
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Photoionization cross sections

In X-rays: photon energy � binding energy of

outer shell electrons =⇒ relativistic QM effects

become important.

=⇒ Inner shell processes =⇒ K- and L-shell

absorption.

Result of approximate computations: For

E � Ethresh:

σbf ∝ E−3.5

Experimental measurements are rare.

Compilations of cross sections:

TOPBASE (Seaton et al.): no relativistic effects.

Henke tables (Henke et al., 1982, 1993): combination of

experimental and theoretical data.

Verner data (Verner & Yakovlev, 1995): relativistic

computations, edge energies adjusted to measured

values.

EPDL 97 (Cullen et al., 1997): compilation of measured

and theoretical data; not evaluated yet due to export

restrictions.
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Photoionization cross sections: He
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Comparison between four different theories for

the He cross section.

For He: Adopt Yan, Sadeghpour & Dalgarno

(1998) values.
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Photoionization cross sections: Metals
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Comparison between the recommended values from Henke et al.
(1993) and the theory of Verner & Yakovlev (1995).

Adopt Verner & Yakovlev values.



4–8

IAAT

Dust 7

Solid State Effects

Nicolosi, Jannitti & Tondello (1991)

Strong influence of state of absorbing material on

absorptivity =⇒ Edge energies of Henke et al.

(1993) are influenced by solid state effects!
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Photoionization cross sections: H2
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Comparison between classical H cross section and a modern
computation of the H2 cross section.

Molecular effects contribute to absorption cross

section: σbf(H2) ≈ 2.85σbf(H).
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Abundances, I

Basic paradigm during last 50 years of

astronomy:

abundances are more or less identical throughout

the universe.

=⇒Measurement possible by looking at solar

and meteoritic abundances (Anders &

Grevesse, 1989).

Recent evidence: ISM abundances are subsolar,

dependent on line of sight (Snow & Witt, 1995;

Mathis, 1996).

X-ray astronomical work needs the ability to

change abundances relative to the adopted

(solar) abundances.
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Abundances, II
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Grevesse & Anders (1989)

Adopted abundances: solar after Anders &

Grevesse (1989) and Grevesse & Anders (1989),

for F and Cl use meteoritic values as

recommended by Shull (1993).

Odd-Even Z variability due to stability of nuclei with paired protons.
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Dust, I

Horsehead nebula (NOT; 2.60 m, Canary

Islands).
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Dust, II

ROSAT: Lunar occultation of Sco X-1 =⇒ X-ray

dust scattering halo
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Dust, III
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Interstellar reddening curve after Fitzpatrick (1999).

2175 Å bump generally interpreted as evidence

for absorption through dust.

Mathis, Rumpl & Nordsieck (1977) (MRN):

graphite and silicate grains, power law size

distribution, P (a) ∝ a−3.5, radii ranging from

0.025µm to 0.25µm, density ∼ 1 g cm−3.
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Dust, IV

Observational evidence and theoretical

motivation favor porous grains composed of

silicates, graphite, and oxides (Mathis & Whiffen,

1989; Fogel & Leung, 1998)

=⇒ Density of grains is smaller than 1 g cm−3.
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Effect of Grains

0.1 1.0 10.0
E [keV]

0.0

0.2

0.4

0.6

0.8

1.0

1 
- 

f

Si

Si

C

C

N

N

O

O

Fe-L

Fe-L

d=0.1µm

d=0.3µm

Energy dependent shielding factor for grains of sizes 0.1 µm and
0.3µm.

X-rays: Metals are “depleted” in grains =⇒ less

metals in gas phase.

Outer skin of grains absorbs most X-rays =⇒ do

not see inner part of grains =⇒ “shielding”

Computations:

Grains do not have influence above ∼3 keV.
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Result: Total Absorptivity
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for gas with grains with MRN distribution.

Note comparably small influence of grains.



SN1994d (HST WFPC)

Supernovae have luminosities comparable to whole

galaxies: ∼ 1051 erg/s in light, 100× more in neutrinos.
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Classification, I

(Filippenko, 1997, Fig. 1); t: time after maximum light; τ : time after
core collapse; P Cyg profiles give v ∼ 10000 km s−1

Rough classification (Minkowski, 1941):

Type I: no hydrogen in spectra; subtypes Ia, Ib, Ic

Type II: hydrogen present, subtypes II-L, II-P

Note: pre 1985 subtypes Ia, Ib had different definition of today =⇒
beware when reading older texts.
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Classification, II

Early 
Spectra: No Hydrogen  / Hydrogen

SN I SN II
Si/ No Si

SN Ia He poor/He rich

~3 mos. spectra
He dominant/H dominant

“Normal” SNII

Light Curve decay
after maximum:
Linear / Plateau

1993J
1987K

1987A
1988A
1969L

1980K
1979C

1983N
1984L

1983I
1983V

1985A
1989B

Core Collapse  of 
a massive progenitor
with plenty of H .

SN IIPSN IIL

SN Ic SN Ib SN IIb

Theory

Core Collapse.
Outer Layers stripped
by winds (Wolf-Rayet Stars)
or binary interactions
Ib: H mantle removed
Ic: H & He removed

Core collapse.
Most (NOT all)  
H is removed during 
evolution by
tidal stripping.

Believed to originate
from deflagration  or
detonation  of an
accreting white dwarf.

courtesy M.J. Montes
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Classification, III

(Filippenko, 1997, Fig. 3)

Light curves of SNe I all very similar, SNe II have

much more scatter.

SNe II-L (“linear”) resemble SNe I

SNe II-P (“plateau”) have const. brightness to

within 1 mag for extended period of time.
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Models

Clue on origin from supernova statistics:

• SNe II, Ib, Ic: never seen in ellipticals; rarely in

S0; generally associated with spiral arms and

H II regions.

=⇒progenitor of SNe II, Ib, Ic: massive stars

(& 8 M�) =⇒ core collapse

• SNe Ia: all types of galaxies, no preference for

arms.

=⇒progenitor of SNe Ia: accreting

carbon-oxygen white dwarfs, undergoing

thermonuclear runaway =⇒ lightcurves all

very similar =⇒ cosmological standard

candles!
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SN 1987A

1987 February 23: Explosion of blue supergiant

Sandulaek -69◦202; closest supernova since Kepler (1604)

courtesy AAO

courtesy ESO
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SN 1987A

(Suntzeff et al., 1991, Fig. 2)

UVOIR (UV, optical, infrared) light curve resembles SNe II-P,

although peak much lower than typical (progenitor was blue

supergiant, not red supergiant).

Exponential decay of bolometric luminosity after first few

100 days =⇒ Radioactive decay
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SN 1987A

(Sunyaev; 1991)

During SN explosion: formation of 56Ni. Then radioactive

decay:
56Ni

EC
−−−−−→
t1/2=6.1 d

56Co
81%EC,19%β+

−−−−−−−−→
t1/2=77.12 d

56Fe

Decay: emission of γ-ray lines

Optically thick medium =⇒ downscattering and

thermalization =⇒ observed continuum spectrum.

1987: Mir-HEXE: Observed X-ray spectrum agrees

with radioactive decay picture.
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SN 1987A

Leising and Share (1990)

Solar Maximum Mission: high resolution γ-ray

mission; direct spectroscopy of 847, 1238, 2599,

and 3250 keV lines from 56Co decay

SMM finds about 0.07M� in cobalt.
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SN 1987A

(Co+Ti; Suntzeff et al., 1991, Fig. 9)

Late time light curve due to radioactive decay of Cobalt.

• Day 125–700: dominated by decay of 56Co

• Around day 1000: radioactive decay of 57Co starts to

dominate (e-folding time: 391 d).

Optical light curve well described by enhanced 57Co/56Co

ratio (∼2.5–4× solar) plus 56Ni and 44Ti (Suntzeff et al.,

1991).
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SN 1987A
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after Hasinger, Aschenbach & Trümper (1996, Fig. 3)

∼1000 d after explosion: the X-ray luminosity of

SN 1987A started to brighten again (LX ∝ t2).

Most likely explanation: interaction between SN

blast wave and interstellar medium (mainly

progenitor stellar wind) =⇒ Supernova remnant!
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Introduction, I

After Supernova Explosion: Formation of

Supernova Remnant (SNR)

Explosion energy goes into kinetic energy of

ejecta:

E =
1

2
Mv2

ej (4.1)

Therefore

vej = 104 km s−1E
1/2
51

(
Mej

M�

)−1/2

(4.2)

∼ 10−2 pc yr−1E
1/2
51

(
Mej

M�

)−1/2

(4.3)

where E51 = E/1051 erg s−1.

=⇒Fast material smashes into stationary ISM

=⇒ shock!

Typical temperatures via thermalization:

E ∼ NkT =
M

mp
kT =⇒ T ∼ 109 K (4.4)

=⇒ X-ray emission!
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Introduction, II

Simplified computation if fluid approximation

possible, i.e.,

mean free path � size of system

Two possible candidates:

1. Ionization length scale

2. Magnetic length scale

Ionization length scale: Need ∼50 eV to collisionally ionize

hydrogen; cross section: σion ∼ a2
0 ∼ 10−17 cm2. For

protons: 104 km s−1 =̂ ∼2 MeV; assume nH = 1 cm−3

=⇒ typical stopping length:

lion ∼
Energy

E Loss/Ionization
· mfp btw collisions (4.5)

∼

(
2 MeV

50 eV

)
1

nHσion
∼ 103 pc (4.6)

=⇒ lion is too large

Magnetic length scale given by Larmor radius (B ∼ 3 µG)

RL =
qB

mc
∼ 2 × 1010 cm ∼ 10−8 pc (4.7)

=⇒ RL is small enough

Use fluid approximation to study SNR evolution!
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Introduction, III

Generally, four phases of SNR evolution:

Free expansion : velocity very large with respect

to ambient medium, swipe up large fraction of

the medium

Sedov phase : Expansion driven by conversion

of internal energy into kinetic energy

Snowplough phase : energy loss due to

radiative cooling becomes important, shock

becomes isothermal, shell moves with

constant radial momentum (“snow plough”).

Merging phase : speed of expansion < speed of

sound, SNR dissolves into ISM

Will now look at these phases in detail.
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Free Expansion, I

Free Expansion: Material moves with uniform

velocity, r ∝ t.

Possible until sweptup mass ∼ ejected mass:

Msweptup ∼
4π

3
ρISMr3

f = Mej (4.8)

(assuming constant density around SN)

Therefore

r =
( 3

4π

)1/3

M 1/3ρ−1/3 (4.9)

= 2 pc

(
Mej

M�

)1/3 (
ρISM

2 × 10−24 g cm−3

)−1/3

(4.10)

Corresponding time scale

t ∼
r

vej
∼ 200 yr

(
Mej

M�

)5/6

E
−1/2
51 ρ

−1/3
24 (4.11)

(using Eq. 4.2).

SN 1987A is only close remnant in free

expansion phase.



Two features currently seen: central ring due to impact of blast wave on circumstellar
material and outer rings, possibly due to ionization of material illuminated by SN blast.
Material possibly from bipolar outflow during blue supergiant phase (fast blue SG
wind colliding with slower RG wind); material ejected ∼20000 years before explosion.
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Free Expansion, III

(Burrows et al., 2000, Fig. 1)

Ring (1.66′′ × 1.21′′) around SN 1987A from

shock heating at point of first contact between

blast wave and equatorial ring from stellar wind of

progenitor. Mainly ionized C and N.

Bright spots brightened first (1997) =⇒ “bullets” within faster than
normal blast wave; 2000: many more spots =⇒ rest of blast wave
has reached location of ring.
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Sedov Phase, I

After free expansion: further energy for expansion

comes from internal energy of system, such that

total energy stays roughly constant (adiabatic

expansion) =⇒ Sedov phase or blast wave

phase.

Energy constancy translates to

E ∼
1

2

(
4π

3

)

ρr3v2

︸ ︷︷ ︸
kinetic energy

+ A
(

ρv2
) (

4π

3

)

r3

︸ ︷︷ ︸
internal energy

(4.12)

∝ ρr3v2
=
! const. (4.13)

where A is a constant. Solving for v = dr/dt:

dr

dt
∝

(
E

ρ

)1/2

r−3/2 (4.14)

Separation of variables gives

r ∝

(
E

ρ

)1/5

t2/5 (4.15)

Detailed theory (Padmanabhan, Vol. 1, Sec. 8.12) shows

that the constant of proportionality is ∼ 1 for γ = 5/3.

Note that these equations assume ρ = const., which is not true
since remnant expands; still, good enough for order of magnitude
computations.
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Sedov Phase, II

Inserting numbers into Eq. (4.15) gives:

Radius of the shell:

r ≈

(
E

ρ

)1/5

t2/5 ∼ 0.3 pcE1/5
51 n

−1/5
H t2/5

yr (4.16)

Velocity of the shell:

v = ṙ =
2

5

(
E

ρ

)1/5

t−3/5 (4.17)

Solving Eq. (4.16) for t and inserting

=
2

5

(
E

ρ

)1/5

r−3/2
(

E

ρ

)3/10

(4.18)

∼ 5000 km s−1
(

r

2 pc

)−3/2

E
1/2
51 n

−1/2
H (4.19)

Temperature of the shell follows from assuming

thermalization, i.e., mpv
2/2 = NkT (=⇒ T ∝ v2):

T ∼ 6 × 108 K

(
r

2 pc

)−3

E51n
−1
H (4.20)

∼ 106 K E
2/5
51 n

−2/5
H

(
t

3 × 104 yr

)−6/5

(4.21)

Measuring r, v, and T allows to determine age of supernova
remnant.

Mainly bremsstrahlung emission with T ∼ 106 K =⇒ X-ray

emission!
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Sedov Phase, III

(HEASARC)

Nature of shock: “contact discontinuity”:

forward shock outside of whichISM has not yet

reacted to SN blast wave

reverse shock where information from ISM has

traveled backwards into SN ejecta

Between two shocks (δr ∼ 25%): hot material.

These remnants are called shell-like remnants.

Note: limb-brightening due to shell-structure (longer path through
bright edge =⇒ ring)
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Sedov Phase, IV

E0102−72.3; blue: X-rays (Chandra), red: radio (ATCA), green:
optical (HST)

Best example for contact discontinuity:

E0102−72.3:

forward shock bright in radio emission

reverse shock bright in X-ray emission

Optical emission only visible as optical filaments.
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Sedov Phase, V

ROSAT HRI; courtesy J. Hughes

Tycho’s supernova remnant:

1572 November 11, first

naked eye supernova for a

long time, now very difficult to

see in optical.

Brahe, De Stella Nova
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Sedov Phase, VI

Tycho’s SNR, VLA, 0.33 MHz (diameter 7 pc; courtesy F. Lazio)

Tycho is also bright in the radio.

B-field frozen into plasma =⇒ shock produces

high B-field regions =⇒ emission of synchrotron

radiation
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Sedov Phase, VII

XMM EPIC spectrum of Tycho’s SNR (Decourchelle et al., 2001,
Fig. 1a)

X-ray spectrum is line dominated =⇒ line

emission from shock excited plasma.

Mass estimate from X-ray spectroscopy and

radio: 1. . . 2M� =⇒ ∼1.4M�?!?

=⇒ remnant of type I explosion?
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Sedov Phase, VIII

Tycho; XMM-Newton EPIC; Decourchelle et al., 2001

X-ray spectroscopy allows mapping of element distribution in remnant

=⇒ structure of progenitor.
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Sedov Phase, IX

Cas A Chandra first light

Cassiopeia A: Young remnant (∼1670), no optical explosion

observed

Mass of ejected material 10–15 M� =⇒ possibly type II?

Type II are also fainter, explaining why explosion has not been
reported.

2000: Chandra discovers point-source in center =⇒

neutron star =⇒ confirming type II assumption!
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Sedov Phase, X

A Chandra portfolio of Cas A:

broad band Silicon

Calcium Iron
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Sedov Phase, XI

Cygnus Loop (diameter ∼ 2.5◦; optical; Wallis/Provin)

Cygnus loop/Veil nebula: end of Sedov phase

(r ∼ 20 pc, v ∼ 115 km s−1, estimated age

t ∼ 20000 yr)

Interior (<18 pc) empty of material (swept free by

progenitor wind).
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Sedov Phase, XII

light shocked ISM gas on top of dense gas;

deceleration of gas as effective gravity =⇒

Rayleigh Taylor instability!
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Sedov Phase, XIII

Fit to observations:

inner temperature: 3 × 106 K,

initial energy release ∼ 3 × 1050 erg,

100 M� within shell.

Note breakup in southern part of nebula; low density region in ISM?
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Sedov Phase, XIV

optical/X-ray composite of Cygnus loop (Hester et al., 1994)
blue: X-ray (ROSAT); red: Hα; green: O III.

Optical filaments due to compressed interstellar

clouds.
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Snow-plough Phase, I

End of Sedov phase when energy cannot be

conserved.

Shock continues with its intrinsic momentum,

“ploughing” through ISM =⇒ snowplough phase

or radiative phase.

Major source of energy loss: Radiative cooling.

Here: collisional excitation and radiative recombination

=⇒ coronal plasma (see chapter 2).

During snowplough phase, strong optical line

emission, mainly from filaments in rim of SNR with

temperature T ∼ 104 K; only weak X-ray emission

Cooling function Λ:

n2
HΛ(T ) ≈ 10−22 erg cm3 s−1n2

HT
−1/2
6 (4.22)

cooling timescale:

tcool ≈
nkT

n2Λ(T )
∼ 4 × 104 yr

T
3/2
6

nH
(4.23)

But for the Sedov phase:

tSedov = 3 × 104 yr T−5/6
6 E

1/3
51 n

−1/3
H (4.24)

Eq. (4.24) follows from solving Eq. (4.21) for t
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Snow-plough Phase, II

Snowplough starts when tcool < tSedov,

T6 < E1/7n
2/7
H (4.25)

Expressing this in terms of the velocity:

v < 200 km s−1 (E51n
2
H)1/14 (4.26)

almost independent from E and n.

Evolution during snowplough phase dominated by

momentum conservation:

dp

dt
=

d

dt

((
4π

3

)

ρr3ṙ

)

= 0 (4.27)

Remember: most mass is already in the shell!

Thus, if snowplough starts at radius r0 and velocity v0,

4π

3
ρr3ṙ =

4π

3
ρr3

0v0 ⇐⇒ r3ṙ = r3
0v0 (4.28)

Separation of variables gives

r(t) = r0

(

1 +
4v0

r0
(t − t0)

)1/4

∝ t1/4 (4.29)

with v0 ∼ 200 km s−1,

v ∼ 200 km s−1
(

t

3 × 104 yr

)−3/4

(4.30)
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Merging Phase

Radio map of G55.0+0.3 (1420 MHz, age ∼ 106 years; Matthews
et al., 1998)

Once speed drops to sound velocity of ISM,

cs,ISM ∼ 10 . . . 100 km s−1 (4.31)

supernova remnant starts to dissolve =⇒

Merging Phase

Elements produced during supernova mix into

ISM (“chemical enrichment”).
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