

Clusters of Galaxies: defined as an excess of galaxies with respect to their surroundings.

quantitative definition:

Abell: "Cluster" = more than 50 galaxies in brightness range $m_3 < m < m_3 + 2$ within 1.5 Mpc of cluster center (m_3 : magnitude of 3rd brightest galaxy).

Catalogue: \sim 4000 Clusters (including southern extension of catalogue, "Abell-Clusters", e.g., A1656=Coma)

Zwicky: "Cluster"= density of 50 galaxies weaker than m_1 + 3 is more than twice of local galaxy density outside of cluster.

Catalogue: 9730 Clusters

Introduction

Clusters

General properties of clusters:

- largest gravitationally bound objects in the universe
- clusters with up to 10000 galaxies known
- \bullet total masses up to 10¹⁵ M_{\odot}
- linear diameter 305...12000 kpc
- small space density
- for "well defined" clusters, galaxy density $\propto r^{-\alpha}$, where $\alpha \sim 0.9 \dots 1.6$.

Mass Luminosity Relation

Easiest method for mass determination: mass-luminosity relation.

Assumption: $M/L \sim \text{const.}$

For elliptical galaxies: $M/L \sim$ 30, for spirals $M/L \sim$ 4 (i.e., always > 1).

 \implies Measure L for each galaxy, determine M, and add all galaxies.

Problems:

- Is M/L really constant?
- faint galaxies are ignored.

1

Virial Theorem

Preferred way: Virial theorem

In equilibrium: V + 2T = 0

where

$$V = -\frac{\alpha G M^2}{R}$$

where M total mass, and α depends on density distribution ($\alpha = 3/5$ for uniform density).

The kinetic energy is

$$T = \frac{1}{2} \sum M_i v_i^2$$

Gives equation that can be solved for M.

Problems:

- Measurement of velocities and radii (we only see projected components)
- Virial theorem assumes equilibrium

Mass determination

History

- 1965: M87 is first extragalactic source detected in X-rays
- 1969: Perseus clusters detected
- 1973–1975: UHURU detects emission from lots of clusters
- 1979: HEAO-1: Spectra: optically thin radiation
- 1984: Einstein: imaging and high resolution spectra
- 1990: ROSAT: Emission from essentially all clusters
- 1990: ASCA: high resolution spectra
- 2000: XMM/Chandra: high resolution spectra, imaging,...

7–10

Coma in X-rays, I

ROSAT All Sky Survey image of the Coma cluster

7–12 RXJ1347–1145: The Brightest Cluster

Note decrease of the X-ray emissivity with distance from center of cluster.

First seen with Einstein: Cluster gas emits K α lines from highly ionized Mg, Si, S, Fe, etc.

X-ray emission seen from same area as optical cluster.

X-ray Emission

- \bullet X-ray Luminosity $\sim 10^{42} \dots 10^{45}\, erg/s$
- Thermal bremsstrahlung dominant for continuum,

$$\epsilon \propto n_{\rm e} n_{\rm p} T^{-1/2} \exp\left(-E/kT\right)$$
 (7.1)

- $\bullet \Longrightarrow$ emissivity is density tracer
- \bullet Temperature of the gas $\sim 10^7 \dots 10^8 \, K$
- \bullet density $n_{
 m e} \lesssim 10^{-3}\,{
 m cm^{-3}}$
- ullet enriched in metals, e.g., Fe \sim 30% solar

What powers the X-rays?

Temperature structure of Centaurus cluster as observed with *Chandra* (red: cold, blue: hot)

Deprojection, II

Let's first assume that the X-ray emitting gas is in hydrostatic equilibrium and obeys the equation of state of an ideal gas:

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -
ho \frac{\mathrm{d}\Phi}{\mathrm{d}r}$$
 and $P = \frac{
ho kT}{\mu m_{\mathrm{p}}}$ (7.2)

in addition assume that the gravitational potential is of the form

$$\Phi = \frac{9\sigma^2}{4\pi G r_c^2} (1 + r/r_c)^{-3/2}$$
(7.3)

(σ : galaxy velocity dispersion). ("King Profile")

Measure the temperature profile, T(r), from the local X-ray emissivity assuming $\rho(r)$, and solve system of equations. Iterate until convergence reached.

Result: T, ρ , P, and Φ determined selfconsistently.

For clusters, Φ is decoupled from $\rho \Longrightarrow$ Missing mass determines gravitational potential.

Cooling Flows

Most clusters show central peak in density structure.

evidence for a cooling flow

Why? Gas density at center is high

- $\implies \epsilon \propto n^2$
- \implies gas has energy loss due to radiation
- \Longrightarrow gas cools faster
- \implies Pressure drops
- \implies Gas gets compressed by gravity well
- \implies density and therefore ϵ increases
- \implies Run away process

At the end gas is so cold that stars can form and it becomes invisible

 \implies Inward motion of gas \implies Cooling flow

Cooling Flows

Cooling Flows

Estimate for mass deposition rate from X-ray luminosity:

$$L_{\rm cool} = \frac{5}{2} \frac{\dot{M}}{\mu m_{\rm p}} kT$$
(7.4)

Typical accretion rates: 200–300 M_{\odot} /yr for Perseus, 20–100 M_{\odot} /yr for Centaurus, 5 M_{\odot} /yr for the Virgo cluster.

The accumulated mass over the time t the cooling flow works is

$$M_{\text{total}} = 10^{12} \left(\frac{\dot{M}}{100 \, M_{\odot} \text{yr}^{-1}} \right) \left(\frac{t}{10^{10} \, \text{yr}} \right) \, M_{\odot}$$

 \implies continued formation of a galaxy?

