3-1	Ellip	3-3 atical Galaxies
X-Rays from Normal Galaxies		Elliptical galaxies: Classification as Ex where $x = 10(a - b)/a$ (integer part; between 0 and 7);
		Low on dust and gas, red color $(B-V\sim$ 0.9) (=old stars), typically low luminosity and low mass (10^6 $M_{\odot})$
	M60 (NGC 4649), E1, U. of Alabama	Monsters: Elliptical galaxies from mergers in galaxy clusters (e.g., M87 in Virgo), M up to $10^{12}M_{\odot},$ designated cD.
	Introduction	3
3-2 Galaxy Classification	S	oiral Galaxies
So,	an op ar Co	piral Galaxies: Elliptical nucleus plus spiral rms, designated Sa, Sb, Sc depending on pening angle of spiral (Sa: $\sim 10^\circ,$ Sc: $\sim 20^\circ)$ nd dominance of nucleus.
E0 E3 E5 E7/501	BI W	luer than ellipticals.
SB0 ₄₂ SB0 ₄ 5 SB0 ₄ 5 SB0 ₄ 5Ba SBb SBc		lass content $\sim 5 \times 10^{-14}$, with $M/L \simeq 20$, ias content increases from Sa to Sc from 1% 0.8%.
Galaxy classification via the Hubble "tuning fork diagram" courtesy George Lake, U. of Washington.	ď	piral arms probably due to density wave.
	M51 (NGC 5194 and 5195), Sc and Irr, Kitt Peak 0.9 m	
Introduction 1	Introduction	m

Introduction

3-7 Irregular Galaxies: Irr II	M2. HTrWFDC M32, HTrWFDC HTrW	Introduction	3-6 X-Ray Emitting Objects	All objects spoken about so far in this class are within our Galaxy	X-ray emissivity of the galaxy as a whole is sum over X-ray emitting objects. Therefore, X-ray emissivity is dominated by point sources:	Stars	Supernova Remnants	Low Mass X-Kay Binaries High Mass X-Ray Binaries	and by continuum sources	Nuclear Decay	On the next few slides we will look at some examples.	
3-5 Barred Galaxies	ModeMo	ntroduction 4	3.6 Irregular Galaxies		Irr I: no symmetry or spi-	ral arms, bright knots of O-	and B-type stars, very blue $(B-V \sim 0.5)$, high dust	content (\sim 16%), $M/L \sim$ 3, masses vary appreciably	from 10 ⁶ to 10 ¹⁰ M_{\odot} .	Examples: SMC, LMC	vigc 4449, Univ. Bonn lars".	

Introduction

Introduction

ß

COBE image (IR): white: stars, red: dust

image in galactic coordinates.
Milky Way
Aluminum
At higher energies: emission lines from radioactive nuclei Review: Diehl & Timmes, 1998, PASP, 110, 637
short lived nuclei: evidence of <i>in situ</i> nucleosynthesis. Best example: ²⁶ Al. Produced by proton capture reactions, mainly ²⁵ Mg, in
• hydrogen burning in massive stars ($M>$ 11 M_{\odot}) • shell burning on the AGB • explosive H burning in novae
and ejected with stellar wind.
²⁶ Al traces massive stars.

10

Detection: decays with half life of 7.5 $\,\times\,$ 10⁵ yr into 26 Mg, emitting 1.809 MeV gamma-rays.

CGRO/COMPTEL 1.8 MeV All-Sky Map

With high resolution spectroscopy (*INTEGRAL*-SPI): • Rotation of the Milky Way seen in 26 AI. • Equilibrium mass of 26 AI: 2.8 \pm 0.8 M_{\odot} • Rate of core collapse supernovae: 1.9 \pm 1.1 events per century.

(Diehl et al., 2006)

Me 8 Above Survey Gamma Ray -Sky H EGREI

emission from Milky Way due to the interaction of cosmic rays with the ISM. At even higher energies (CGRO/EGRET; >100MeV):

Low latitudes dominated by stellar X-ray sources, high latitudes by hard extragalactic sources.

Fermi (formerly GLAST) can now produce similar skymaps in about one week NASA/GSFC/Stanford

(3rd INTEGRAL source cata-logue)

Binaries are disk population!

Other Galaxies

Other Galaxies

2

4

NGC 300 (Sc), M. Schirmer/ESO/2.2m

NGC 300: nearby galaxy, point sources classified with Color-Color diagram

Andromeda Galaxy

Other Galaxies

M31, different deep *ROSAT* pointings (note characteristic PSPC fingerprints; Supper et al. (1997)). About 400 sources detected, 50 of which are foreground (more than in *UHURU* catalogue!). Spectra or hardness ratios are compatible with accreting objects ($\Gamma \sim 2$, $N_{\rm H} \sim 10^{21} \, {\rm cm}^{-2}$); 15 SSS found; residual diffuse emission from hot gas.

3-23

M31 with XMM-Newton (courtesy W. Pietsch and ESA)

Novae in M31 with XMM-Newton (2000-2004; courtesy W. Pietsch and ESA)

X-ray: NASA/CXC/MPE/W.Pietsch et al; Optical: NOAO/AURA/NSF/T.Rector & B.A.Wolpa

Center of Andromeda with Chandra: blue: very soft source close to supermassive black hole in center ($M\sim10^7\,M_\odot$); other sources: XRBs

Other Galaxies

M82 (Chandra/CXC)

M82: Large population of XRBs in starburst region, hot gas flowing outwards. (Starburst caused by close encounter with M81?)

The Antennae (NGC 4038/4039) © David M. Jurasevich

M82 (R. Gendler)

The Antennae: an extreme example for galaxy interaction

CXC/NASA (note, image flipped compared to previous ones)

M82

3-41

Carpano, S., Wilms, J., Schirmer, M., & Kendziorra, E., 2005, A&A, 443, 103

Diehl, R., et al., 2006, Nat, 439, 45

Fabbiaro, G., & White, N. E., 2006, in Compact stellar X-ray sources, ed. W. Lewin, M. van der Klis, (Cambridge: Cambridge Unix, Press), 475–506

Kahabka, P., Pietsch, W., & Hasinger, G., 1994, A&A, 288, 538

Kim, D.-W., & Fabbiano, G., 2004, ApJ, 611, 846

Kong, A. K. H., DiStefano, R., Garcia, M. R., & Greiner, J., 2003, ApJ, 585, 298

Prestwich, A. H., Irwin, J. A., Kilgard, R. E., Krauss, M. I., Zezas, A., Primini, F., Kaaret, P., & Boroson, B., 2003, ApJ, 595, 719

Supper, R., Hasinger, G., Pietsch, W., Trümper, J., Jain, A., Magnier, E. A., Lewin, W. H. G., & van Paradijs, J., 1997, A&A, 317, 328