

Classification, 1

Classification based on morphology and radio spectrum:

- Powerful double-lobed radio galaxies with hotspots and a steep radio spectrum falling toward higher frequencies (Fanaroff-Riley class II, FR II)
- Weaker steep-spectrum, double-lobed radio galaxies without leading hotspots (FR I types)
- 3. Core-dominated flat-spectrum sources (Blazars: quasars and BL Lac objects)
- Compact steep-spectrum sources (CSS sources) and gigahertz-peaked spectrum sources (GPS sources); no large-scale radio structure; morphological classification term: compact symmetric objects (CSOs) or compact doubles

Observing technique and frequency strongly affects sample composition (e.g., low-frequency fluxdensity limited surveys tend to select steep-spectrum sources. Flat-spectrum sources are classical targets for Very-Long-Baseline Interferometry (VLBI) observations, which are sensitive to compact emission.

The Zoo of Radio-Loud AGN

Fanaroff-Riley Type 1: asymmetric jets with wide opening angle ending in plumes

 $\label{eq:massive} M84~(3C272.1)~(Laing & Bridle, 1987): $$ VLA 4885 MHz, 134'' <math display="inline">\times~170';$ see also \$\$ www.jb.man.ac.uk/atlas/other/3C272P1.html

A. Bridle, www.cv.nrao.edu/~abridle/images.htm

Fanaroff-Riley Type 2: powerful lobe dominated doubles; jets often one-sided

	Synchrotron Radiation Jets are observed to have strong polarization and power law radio spectrum. These are characteristics of synchrotron radiation. Synchrotron-Radiation (=Magnetobremsstrahlung): Radiation emitted by relativistic electrons in a magnetic field.	Outline for the following discussion of synchrotron-radiation theory: Shortened, qualitative description (see Rybicki & Lightman, "Radiative Processes in Astro- physics", Wiley, New York, Chapter 3,6,7 for details): 1. Motion of electrons in magnetic fields 2. Look at emission of one single electron	3. Consider electron distribution and opacity effects to obtain the final spectrum		Moving electron in magnetic field ($E = 0$): Lorentz-Force (cgs formulation) $\frac{d\mathbf{p}}{dt} = \frac{e}{c}\mathbf{v} \times \mathbf{B} \text{ where } \mathbf{p} = \frac{m_{\mathbf{e}}\mathbf{v}}{\sqrt{1-\beta^2}} = \gamma m_{\mathbf{e}}\mathbf{v} (5.1)$ where $\beta = v/c$.	i.e.: $\frac{dv}{dt}=\frac{e}{c\gamma m_{\rm e}}v\times B~~.~(5.2)$ Since $v\times B$ is always perpendicular to v and B , the component of v along the B-field does not change. Constant acceleration perpendicular to this (circular component) leads to helical motion with the frequency	$\omega_{\rm B} = \frac{eB}{\gamma m_{\rm e}c} = \frac{\omega_{\rm L}}{\gamma}$ (5.3) where $\omega_{\rm L} = 2\pi \nu_{\rm L}$: Larmor frequency (also Cyclotron frequency, gyrofrequency).
r resolution			GE	م ب	ated pact		m ex- ictrum iles."
d higher frequencies yield highe			Intesy of the SeaWIFS Project NASAGSFC and ORBIMA		IIO SOULCES: DIAZALS Almost all the flux density is concentri within a few milliarcseconds-size com jett	0718+714	Image Courtesy: MOJAVE "Roughly equal numbers of steep-spectru tended double-lobed sources and flat-spe objects that are unresolved on arcsec sca (Zensus, 1997)

Jet Emission

o

2

Jet Emission

For $\gamma \gg$ 1, i.e., $\beta = v/c \sim$ 1

such that

Example: Cygnus A	Morphology of radio galaxies suggests that matter is transported along	two channels (jets) from the center of the system (core) to the outer re- gions (here: lobes): What is the speed? Jet Physics	VLBI resolution 1 mas3C 111: Apparent speed of jet: $\sim 5c$ 1995.261995.261995.261995.261995.26Superluminal motion: The appar- ent velocities of jet features ("blob measured in many AGN jets are $v > c$.1997.66 $v > c$.1997.66First discovered in 1971 in 3C279 (Cohen et al., 1971).	1998.18 1999.38 1999.85 1999.85 1999.85 2000.49 2000.49
Summary	What we have done so far: 1. Motion of the electron 2. Radiation characteristic from relativistic motion 3. Doppler-effect 4. Integration over electron distribution It is possible to do the same analytically without any approximations. This is too complicated to be done here. See the references for details.	Jet Emission 11 11	after Shu (1991, Fig. 18.6) At low ν : synchrotron emitting electrons can absorb synchrotron photons: synchrotron self-absorption.	For a power law electron distribution $\propto E^{-p}$, total spectral shape is: For a power law electron distribution $\propto E^{-p}$, total spectral shape is: For low frequencies: $P_p \propto w^{-1/2} v^{5/2}$ (independent of $p!$) For large frequencies: $P_p \propto w^{-(p-1)/2}$ One often uses the terms optically thick(thin to describe the absorbed/unabsorbed part of a synchrotron

12

Superluminal Motion Demo:

www.physics.purdue.edu/MOJAVE/superluminal.swf

		·	·
	podcast.de	•	
oogle	VIEGEL Wissen		tescope View td: Speed:
, Q- 0	Astrov SP		Te trent Spee
	Kids * /	·	Appa
	Sport *	•	
	Musicv		
	Applev		· · · · ·
	Tools v		•
il.swf	* pniqqof		•
perlumina	(ahoo! S	p .	/
OJAVE/su	v Mein	s at light Jet .	··· •
ue.edu/M	WS TV	tra veling lativistic	, ,
sics.purd	com Ne	Object Re	· *
/www.phy	astronews		
G http:/	APOD 4		
+	Ay Links	actor	Mrpc) Afreed
t.X	Oclick A	degrees) degrees) orentz F	Stanto Stanto (13) Start/ Stopfi
*	8		

 $t_1 = 0$: Blob is ejected from core and emits first photon.

Superluminal Motion Demo:

www.physics.purdue.edu/MOJAVE/superluminal.swf

A Contract of the product of the pro

Superluminal Motion Demo:

www.physics.purdue.edu/MOJAVE/superluminal.swf http://ww.physics.undue.edu/MO/NVE/superluminal.wf

 t_3 : Blob almost keeps the pace of the photons.

Superluminal Motion Demo:

www.physics.purdue.edu/MOJAVE/superluminal.swf http://www.physics.purdue.edu/MOVE/superluminiswi

 t_4 : First photons arrive at telescope. Observer starts to take the time.

 t_2 : First photons and blob travel towards earth.

 t_5 . The last photons have a much smaller way to travel and come in quickly. Observer measures superluminal motion on the sky!

Jet Physics

ω

Relativistic Boosting, III	One can show (i.e., Rybicki & Lightman, chap. 4.9) that S_{ν}/ν^3 is invariant under Lorentz transformation, where S_{ν} is the flux density.	Therefore, observed intensity of a moving blob: $\frac{I(\nu_{\rm obs})}{\nu_{\rm obs}^3} = \frac{I(\nu_{\rm em})}{\nu_{\rm em}^3} \tag{5.29}$	and $I(\nu_{obs}) = \nu_{obs}^3 \frac{I(\nu_{em})}{\nu_{em}^3} = \mathcal{D}^3 I(\nu_{em}) $ (5.30) Specifically, for a blob with a power law spectrum $(I(\nu) = A\nu^{\alpha})$:	$I(\nu_{\rm obs}) = \mathcal{D}^3 A \nu_{\rm em}^{\alpha} = \mathcal{D}^3 A \mathcal{D}^{-\alpha} \nu_{\rm obs}^{\alpha} $ (5.31)	$I(\nu_{\rm obs}) = \mathcal{D}^{3-\alpha} I(\nu_{\rm em}) . \tag{5.32}$	Even for relatively modest relativistic velocities of 0.97 c ($\gamma\simeq4$), for example, the flux in the forward direction can be boosted by a factor 1000, while it is reduced by a factor 1000 in the backward direction!	Jet Physics 13	5-34	Jet One-Sidedness, I	Now take a source emitting blobs symmetrically in two directions. From Eq. (5.31) the ratio of fluxes from the blobs is	$\frac{F_1}{F_2} = \left(\frac{1+\beta\cos\phi}{1-\beta\cos\phi}\right)^{3-\alpha} $ (5.33)	Even for mildly relativistic speeds and large angles, features on the approaching side are always significantly brighter than on the re- ceding side.	Jet can be expressed as a series of blobs. But the number of blobs observed scales as the Doppler factor, such that for jets:	$\frac{F_1}{F_2} = \left(\frac{1+\beta\cos\phi}{1-\beta\cos\phi}\right)^{2-\alpha} \tag{5.34}$	One sidedness of jets is a relativistic effect!
Relativistic Boosting, I	If jet plasma is moving at relativistic speeds, we have to consider also other rela- tivistic effects.	Remember that $ u = rac{1}{\Delta t_{\mathrm{A}}} = rac{ u'}{\lambda \left(1 - rac{v}{c} \cos \theta\right)} $ (5.26)	and $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{2}}}$ (5.27)	This defines the relativistic Doppler factor	$\mathcal{D} = \frac{1}{\gamma \left(1 - \frac{v}{c} \cos \theta\right)} = \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \theta} $ (5.28)	(the difference to the classical Doppler factor is only the γ factor). The Doppler factor is a strong function of the aspect angle and can become very large for $v \to c$.	Jet Physics 11	5-32	Relativistic Boosting, II	beta={0.999, 0.997, 0.99, 0.968, 0.9, 0.684, 0.} 1.5	actor			0 0.2 0.4 0.0 0.6 1 theta/pi	Within \sim 1 $-$ 2 deg, the Doppler factor can approach values of 100 or higher.

Jet Physics

Jet Physics

12

1 4

5–37 Kinematics of Relativistic Jets	 MOJAVE: Monitoring Of Jets in Active galactic nuclei with VLBA Experiments; Lister et al. (submitted to ApJ) Wavelength λ = 2 cm (15 GHz) Vavelength λ = 2 cm (15 GHz) Statistically complete sub-sample: All flat-spectrum (α < 0.5) sources whose compact flux density ever reached 1.5 Jy (2 Jy for southern sources) Extended sample includes all known gamma-ray blazars (newly detected <i>Fermi</i> sources to be added as of January 2009) Results, images and movies at hower sources less frequently) 	17	Figure 12:000 Figure 12:000 <th 12:000<="" colume="" th=""></th>	
2-35		15 Jet Physics		
Jet One-Sidedness, II	φ ^[deg]	cs	monitoring of extragalactic jets on parsec scales with t monitoring of extragalactic jets on parsec scales with t $\left \left \left$	
	μ, μ	Jet Phys	Survey and Survey	

Jet Physics

Zensus, J. A., 1997, ARA&A, 35, 607

(one week of data in August 2008)

Cohen, M. H., Cannon, W., Purcell, G. H., Shaffer, D. B., Broderick, J. J., Kellermann, K. I., & Vermeulen, R. C., 2007, ApJ, 170, 207 Cohen, M. H., Lister, M. L., Homan, D. C., Kadler, M., Kellermann, K. I., Koralev, Y. Y., & Vermeulen, R. C., 2007, ApJ, 658, 232 Kadler, M., et al., 2008, ApJ, 680, 559 Koeller, Y. Y., et al., 2005, AJ, 130, 2473 Laing, R. A., & Bridle, A. H., 1987, MNRAS, 228, 557 Nilsson K., Pursimo, T., Sillanpää, A., Takalo, L. O., & Lindfors, E., 2008, A&A, 487, L29 Rybicki, G. B., & Lightman, A. P., 1979, Radiative Processes in Astrophysics, (New York: Wiley) Shu, F. H., 1991, The Physics of Astrophysics, Vol. I. Radiation, (Mill Valley, CA: University Science Books) Whitey, A. R., et al., 1971, Science, 173, 225

flat-spectrum radio quasars and BL Lac objects