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X-Ray Binaries
16 Apr Introduction, History
23 Apr Accretion in X-Ray Binaries
30 Apr Accretion in X-Ray Binaries, cont'd
Neutron Star X-Ray Binaries
7 May LMXBs
14 May no lecture
21 May Aperiodic Variability, QPOs
28 May no lecture — Pentecost
4 Jun X-Ray Bursts
11 Jun X-Ray Pulsars, Accretion Column, Magnetic Fields
Black Hole X-Ray Binaries
18 Jun Black Hole X-ray Binaries
25 Jun Microquasars
2 Jul  X-Ray Transients
XRB statistics
9 Jul Formation and Evolution of XRBs
\ 16 Jul  XRBs in other Galaxies
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Why are X-ray binaries interesting?

e access to exotic end-points of stellar evolution

e studies of accretion and accretion disks on long timescales

with respect to the dynamic timescale

e probe physical processes close to surface of neutron star or BH event horizon
e some are are galactic micro-scale analogues of active galactic nuclei

e they allow mass/size constraints, or even accurate measurements, of their
fundamental properties

e they allow to constrain evolution of binary star systems

After PA. Charles
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I Textbooks on XRB}

LEWIN, W.H.G., VAN DER KLIS, M., 2006, Compact Stellar X-Ray Sources,
Cambridge: Cambridge Univ. Press, 706pp., €155.90
Graduate level summary of all aspects of X-ray binary research. Overpriced. The articles are
also available on http://www.arxiv.org.

LEWIN, W.H.H., VAN PARADIJS, J., VAN DEN HEUVEL, E.P.J., 1995, X-Ray
Binaries, Cambridge: Cambridge Univ. Press, 662pp., €58.90
Predecessor to Lewin & van der Klis, summarizes the knowledge before the launch of the
current satellites. Many of the general overview articles in this reference are still worthwhile
reading.

CHARLES, P.A., SEWARD, F.D., 1995, Exploring the X-Ray Universe,
Cambridge: Cambridge Univ. Press, 398+xvipp., out of print

The only more or less recent textbook on X-ray astronomy. Does not cover the past 20 years,

however, still a good summary of the basic physics.
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'Other Textbooks]

FRANK, J., KING, A., RAINE, D., 2002, Accretion Power in Astrophysics, 3rd
edition, Cambridge: Cambridge Univ. Press, 398pp., €55.90
The standard textbook on accretion, covering all relevant areas of the field, including X-ray

binaries.

PADMANABHAN, T., 2000, Theoretical Astrophysics: Volumes 1-3, Cambridge:
Cambridge Univ. Press, ~ 500pp. each, ~€60 per volume

Introduction to the (theoretical) physics of astrophysics. Short, concise, great. Graduate level,

but understandable, although not for the faint hearted. ..

BRrRADT, H., 2003, Astronomy Methods: A Physical Approach to Astronomical
Observations, Cambridge: Cambridge Univ. Press, 458pp., €57.50

Summary of many technical details that are useful to know if you want to become a
professional astronomer. Detectors, radiation processes, etc.

s [End Stages of Stellar Evolution, 1V ~

Stars end their life as one of three kinds of different compact objects:

White Dwarf: p ~ 10°...10°gcm 3, R ~ Rg, Equilibrium between gravitation
and pressure from degenerate electrons, M < 1.44 M,
(Chandrasekhar-limit; 1931).

Neutron Star: p ~ 10*%...10% gecm =3, R ~ 10km, this density causes inv.
(-decay (p + e~ — n), i.e., star consists (mainly) of neutrons.
1.44 M < M < 3 M, (Oppenheimer-Volkoff limit; 1939).

Black Hole: For M 2 3 M, no stable configuration known
— Star collapses completely
= Black Hole
Size scale: Rs = 2GM/c¢* = 3(M /M) km
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Luminosity of a sphere of radius R
and temperature 7"
L =4nR?. oggT* (2.1)

(0sg = 5.67 x 10 %ergecm 2K *s™1)

For a typical white dwarf,

R ~ 6000 km, T" ~ 10000 K

— L =26x10%ergs™ ~

6.6 x 10~* L, corresponding to an

absolute magnitude of

Mwp = 15.9 mag.

= with a limiting magnitude of
25 mag for today’s telescopes,
isolated WDs are detectable out
to ~700 pc.

First discovery: Alvan Graham Clark,

Sirius A+B (McDonald Observatory) 1862

-

What are XRBs? 5



- Detectability, 11}
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(17.5' x 17.5' Walter & Matthews, 1997, Fig. 1)
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Same calculation for a neutron star

(R = 10km, T = 10°K) gives

Lns ~ 7 x 102 ergs ~ 2 x 1075 L, or an
absolute magnitude of 19.7 mag.

Pre VLT/Keck: practical limit of surveys
~20pc, 10m class and space based
telescopes of today extend this to ~100 pc.

— Itis virtually impossible to discover
isolated neutron stars in the optical.

HST Image of the isolated neutron star RX
J185635—3754, which has a visual magnitude
~25.6 mag
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X-rays from Sun from
5 (modified V2 rocket;

Wavelength

(Charles & Seward, 1995, Fig. 1.12)
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- Detectability, 11}

F300W _ <

(17.5' x 17.5' Walter & Matthews, 1997, Fig. 1)
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Same calculation for a neutron star

(R = 10km, T' = 10°K) gives

Lys ~ 7 x 10%ergs ~ 2 x 107° L, or an
absolute magnitude of 19.7 mag.

Pre VLT/Keck: practical limit of surveys
~20pc, 10m class and space based
telescopes of today extend this to ~100 pc.

= It is virtually impossible to discover
isolated neutron stars in the optical.

HST Image of the isolated neutron star RX
J185635—3754, which has a visual magnitude
~25.6 mag
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Friedman et al.)

Sun’s relative weakness stopped search for other cosmic X-ray sources for 13 years.
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Early 1960s: First X-ray observations of the sky with collimated Geiger counters

(Riccardo Giacconi et al. at American Science & Engineering, Boston, prompted by B. Rossi):
Search for X-ray fluorescence emission from the Moon

18 June 1962: 1st scan of the sky during an Aerobee flight (Giacconi et al., @‘):

First discovery of an extrasolar X-ray source — Sco X-1

Nobel prize in 2002 to R. Giacconi

The moon was first detected in the X-rays by ROSAT in the 1990s.
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Throughout the 1960s further detections of X-ray sources with X-ray detectors
using rocket flights:

e 18 June 1962: Sco X-1 dQ_i@;QQni et al., 1962) [AS&E]

e 29 April 1963: Crab nebula ‘Béwgger et al., 1964) [NRL]

e 16 June 1964: Cygnus X-1 (Bowyer et al., 1965)

e 16 June 1964: Galactic Center , 1965)

e 16 June 1964: SN 1604 (Kepler's SNR Bowyer et al., M)

Some sources were speculated to be neutron stars

confirmation of these observations by teams from MIT (Clark, Oda), Lawrence Livermore
Laboratory (Chodil et al.), Leicester (Pounds et al.), and others.

End of 1960s: ~60 sources known.

Problems of rocket and balloon studies: pointing accuracy, short observing time.

Y | To be able to have longer observing times, one needs to go to space! | D
What are XRBs? 10
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12 Dec 1970: launch of UHURU:

First satellite sensitive to X-rays
UHURU: Swahili for “freedom”

Detailed observations/positions for
many bright X-ray sources (e.g.,
Cygnus X-1, Hercules X-1, etc.),
discovery of many more

Discovered sources summarized in the
4th UHURU catalorg (339 sources,

Forman et al. 1978).
Source names: e.g., 4U0115+63,
4U1957+11,...

e Discovery of X-ray Binaries, I ~N
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‘Schreier etal. 41972): Detection of 4.8 s pulsations from Centaurus X-3 with
UHURU: Cen X-3 is an X-ray Pulsar.

= at least some X-ray sources are rotating.
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e IDiscovery of X-ray Binaries, Il} ~N

0 A At= tg -lp T*
[ Ot=at +b sne (1-10)
T 4

T* = 4,8422 sec o N\
sol— a= 0.000198 + 0,000001 7 RN
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(Schreier et al., 1972, Fig. 4a)

‘Schreier etal. 41972): Time delay in arrival time of pulses from Cen X-3:

H Cen X-3 is an X-ray Pulsar. H

\_NASA/GSFC )
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Fi6. 4—Continued

(Schreier et al., 11972, Fig. 4c)

Schreier et al. (1972): Cen X-3 shows periodic drops in X-ray count rate on a
timescale of 2.08d.

—> eclipses by a star?
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IDiscovery of X-ray Binaries, V| ~N

&
T

4t (seconds)
i o
T
T T T Toccumatowcewtem
\,*\
My
‘OCCULTATION CENTER

I s "
JAN.13, 872 JAN 14, 1972 JAN. 16, 1972

(Tananbaum et al.,@, Fig. 3)
Similar to Cen X-3, X-ray pulsations of Her X-1 show periodic delays

(timescale: 1.7 d)

—> X-ray binaries as class of objects

What are XRBs?

SOURCE IN HERCULES (2U1705+34)
November 6, 1971
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(Tananbaum et al., 1971 Fig. 1)

Detection of 1.24 s pulsations from Hercules X-1 with UHURU:
—> X-ray pulsars as class of objects
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The observed amplitude of the time delays seen in Her X-1is +13.19s. Since it is sinusoidal the X-ray emitting object is very likely to move on a circular orbit together with
the optical star around their center of mass (CM).

The distances from the CM are given by

mary = mary = map(r — r1) (2.2)
where 7 = 1y 4 1. Therefore
mar
MaTy + Mary = Mmer =11 = (2.3)
my +mp
The velocity of object 1 is then
2mry
n="7 (2.4)
where P is the observed period.
The observed velocity component (perpendicular to the plane of sky) is
Lo 2mry . 2m my L
U10bs = V1 SiNG = sini = sini 2.5
hobs T P P myt m; @5
where i is the system’s inclination (i = 90° is an “edge on orbit").
To replace r with observables, we derive Kepler's 3rd law for the special case of a circular orbit where the centripetal force is balanced by the gravitational force:
mvd  mamp
—L =G (2.6)
ry r
Therefore, inserting v; from above
4?7 my r3 G
-5 =G— = —=-—m+m 2.7
P2 my +my 72 P2 47r2( B 2) @n
We can now use Eq. (2.7) to eliminate 7 in Eq. (2.5):
First, solve Eq. (2.5) for r/P...
r v: my+my 1
T _ Ulobs Ma 2 )

P 2m mp  sini
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take the cube of this equation. . .

3

3
73 Viobs (ma +m2)® 1

— = 2.9
P3 " 8rd m3  sin®i @9
insert Eq. (2.7). ..
] Pu} s (my +mp)® 1
—(my+mp) = —5———g—— 5 2.10;
a2 (mtme) = mi sindi @10
and move all known quantities to one side of the =-sign to obtain the mass function:
3 ind 3
msj sin® i Pu
2 _ 1 fur (2.11)

(m1+mp)?2  2nG Y
Note that the mass function gives a lower limit for m, when the velocity amplitude of the other object, v, has been observed.

For the case of Hercules X-1, the observed time delay is At = 13.19 s. This corresponds to an orbital radius of r; = cAt = 4 x 10° km and the velocity is v, ~ 170 kms 1.
Since eclipses have been observed in Her X-1, the inclination is i = 90°. Therefore, the mass function of Her X-1 becomes fj; = 1.75 x 10% g = 0.876 Mg,

e Discovery of X-ray Binaries, V| ~N
3o .
el k.,":f":"“"‘ D Shortly after the UHURU
L . " N measurements, HZ Her
s xf* N s was identified as the
aab ¢ N % optical companion, which
-l < s k2 is varying on the 1.7d
sor ‘ . L orbital period.
-10 -0.5 o] 0.5 10

HZ Her was recognized as a
variable star by C. Hoffmeister in

(Bahcall & Bahcall, 11972, Fig. 2) 1936.
This allowed the mass of the companion to be measured to m, = 2.3 M, and
the mass of the X-ray source to m; = 1.4 M.

H Her X-1 is a neutron star. |
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Motion of the H/3 line in HDE 226868/Cyg X-1
(Pottschmidt, Wilms)
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Why are X-ray binaries so bright?

1. Fusion
Reactions a la

4p — *He + Amc?

Energy released:

e Accretion, IIIi

2. Gravitation

Accretion of mass m from oo onto

Black Hole M with radius Rs yields
GMm _2GM

AFaee = TR where Rg = =
S

Fusion yields
~6 x 10%ergg™t =6 x 10*Jg?!

Accretion produces
~10%%ergg ! = 102J3g7*

(AEyue ~ 0.007myc?)

(AFaee ~ 0.1mpc?)

source.

—=> Accretion of material is the most efficient astrophysical energy

\. .. therefore accreting objects are the most luminous objects in the whole universe.
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X-ray binaries are
neutron stars or
black holes
accreting material
from a normal star.
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