

Accretion in X-Ray Binaries

Literature

• J. Frank, A. King, D. Raine, 2002, Accretion Power in Astrophysics, 3rd edition, Cambridge Univ. Press

The standard textbook on accretion, covering all relevant areas of the field.

- T. Padmanabhan, 2001, Theoretical Astrophysics, II. Stars and Stellar Systems, Cambridge Univ. Press See introduction to this lecture.
- J.E. Pringle, 1981, Accretion Disks in Astrophysics, Ann. Rev. Astron. Astrophys. **19**, 137 Concise review of classical accretion disk theory.
- N.I. Shakura & R. Sunyaev, 1973, Black Holes in Binary Systems.
 Observational Appearance. Astron. Astrophys. 24, 337 and J.E. Pringle & M. Rees, 1972, Accretion Disc Models for Compact X-Ray Sources, Astron. Astrophysi, 22(1), 1

The fundamental papers, which *really* started the field.

Introduction

2

4 - 3

Characterize accretion process through the accretion efficiency, η : $L = \eta \cdot \dot{M}c^2$ (4.11)where \dot{M} : mass accretion rate (e.g., $g s^{-1}$ or $M_{\odot} yr^{-1}$). Therefore maximum accretion rate ("Eddington rate"): $\dot{m} = \frac{L_{\rm Edd}}{\eta c^2} \sim 2 \times 10^{-8} \cdot \left(\frac{M}{1 \, M_{\odot}}\right) \, M_{\odot} \, {\rm yr}^{-1}$ (4.12)(for $\eta = 0.1$)

Emitted spectrum

Characterize photon by its radiation temperature, T_{rad} :

$$h\nu \sim kT_{\rm rad} \implies T_{\rm rad} = h\nu/k$$
 (4.19)

Optically thick medium: blackbody radiation

$$T_{\rm b} = \left(\frac{L}{4\pi R^2 \sigma_{\rm SB}}\right)^{1/4} \tag{4.20}$$

Optically thin medium: L directly converted into radiation without further interactions \implies mean particle energy

$$T_{\rm th} = \frac{GMm_{\rm p}}{3kR} \tag{4.21}$$

Plugging in numbers for a typical solar mass compact object (NS/BH):

$$T_{\rm rad} \sim 1 \, {\rm keV}$$
 and $T_{\rm bb} \sim 50 \, {\rm MeV}$ (4.22)

Accreting objects are broadband emitters in the X-rays and gamma-rays.

Accretion Luminosity

14

4-8

Accretion Disks

Accretion Luminosity

4-6

(4.8)

(4.9)

(4.10)

9

4-7

Matter comes from companion star \implies accreted matter has angular momentum

 \implies accretion disk forms.

Numerical simulation of disk formation by J. Blondin (NCSU) Stream is well described by ballistic motion, outer disk radius at \sim 0.5 Roche Lobe radius.

J. Blondin Shock forms over large parts of the disk.

 \implies gas pressure must support disk vertically against gravitation:

$$\frac{GM}{R^2}\frac{H}{R} = \frac{1}{\rho} \left| \frac{\partial P}{\partial z} \right| \sim \frac{P_{\rm c}}{\rho_{\rm c} H}$$
(4.24)

where $P_{\rm c}$ characteristic pressure, $\rho_{\rm c}$ characteristic density.

Accretion Disks

10

Accretion Disks

Thin Disks: Angular Momentum Transport, I

Most important question: angular momentum transport Angular velocity in Keplerian disk:

$$\nu(R) = \left(\frac{GM}{R^3}\right)^{1/2} \tag{4.34}$$

("differential rotation")

 \implies angular momentum per mass ("specific angular momentum"):

$$\mathcal{L} = R \cdot v = R \cdot R\omega(R) = R^2 \,\omega(R) \propto R^{1/2} \tag{4.35}$$

 \implies decreases with decreasing R!

Total angular momentum lost when mass moves in unit time from R + dR to R:

$$\frac{dL}{dR} = \dot{M} \cdot \frac{d(R^2\omega(R))}{dR}$$
(4.36)

Accretion Disks

14

4-22

4-21

Thin Disks: Angular Momentum Transport, II

Since L changes: accreting matter needs to lose angular momentum. This is done by viscous forces excerting torques:

Force due to viscosity per unit length:

$$\mathcal{F} = \nu \Sigma \cdot \Delta v = \nu \Sigma \cdot R \frac{d\omega}{dR}$$
(4.37)

where ν : coefficient of kinematic viscosity

Therefore total torque

$$G(R) = 2\pi R \mathcal{F} \cdot R = \nu \Sigma 2\pi R^3 \left(\frac{d\omega}{dR}\right)$$
(4.38)

and the net torque acting on a ring is

 \Longrightarrow This net torque needs to balance change in specific angular momentum in disk.

 $\frac{dG}{dR}dR$

Accretion Disks

Thin Disks: Angular Momentum Transport, III

Balancing net torque and angular momentum loss gives:

$$\dot{M}\frac{d(R^{2}\omega)}{dR} = -\frac{d}{dR}\left(\nu\Sigma 2\pi R^{3}\frac{d\omega}{dR}\right)$$
(4.40)

Insert $\omega(R) = (GM/R^3)^{1/2}$ and integrate:

$$\nu \Sigma R^{1/2} = \frac{\dot{M}}{3\pi} R^{1/2} + \text{const.}$$
 (4.41)

const. obtained from no torque boundary condition at inner edge of disk at $R = R_*$: $dG/dR(R_*) = 0$, such that

$$\nu \Sigma = \frac{\dot{M}}{3\pi} \left[1 - \left(\frac{R_*}{R}\right)^{1/2} \right]$$
(4.42)

Therefore the viscous dissipation rate per unit area is

$$D(R) = \nu \Sigma \left(R \frac{d\omega}{dR} \right)^2 = \frac{3GM\dot{M}}{4\pi R^3} \left[1 - \left(\frac{R_*}{R} \right)^{1/2} \right]$$
(4.43)

Accretion Disks

Thin Disks: Temperature Profile, I
The viscous dissipation rate was
$$(-l_{1})^{2} = 0 \text{ CIMUS} \left[-(-l_{1})^{1/2} \right]$$

$$D(R) = \nu \Sigma \left(R \frac{d\omega}{dR} \right)^2 = \frac{3GM\dot{M}}{4\pi R^3} \left[1 - \left(\frac{R_*}{R} \right)^{1/2} \right]$$
(4.43)

If disk is optically thick: Thermalization of dissipated energy

 \implies Temperature from Stefan-Boltzmann-Law:

$$2\sigma_{\rm SB}T^4 = D(R) \tag{4.44}$$

(disk has two sides!) and therefore

$$T(R) = \left\{ \frac{3GM\dot{M}}{8\pi R^3 \sigma_{\rm SB}} \left[1 - \left(\frac{R_*}{R}\right)^{1/2} \right] \right\}^{1/4}$$
(4.45)

Thin Disks: Temperature Profile, IV

Inserting astrophysically meaningful numbers:

$$\begin{split} T(R) &= \left\{ \frac{3GM\dot{M}}{8\pi R^3 \sigma_{\rm SB}} \left[1 - \left(\frac{R_*}{R}\right)^{1/2} \right] \right\}^{1/4} \\ &= 6.8 \times 10^5 \,\mathrm{K} \cdot \eta^{-1/4} \left(\frac{L}{L_{\rm Edd}}\right)^{1/2} L_{46}^{-1/4} \mathcal{R}^{1/4} x^{-3/4} \end{split}$$

where $\eta = L_{Edd}/\dot{M}_{Edd}c^2$, $x = c^2 R/2GM$, $\mathcal{R} = (1 - (R_*/R)^{1/2})$. Radial dependence of T:

 $T(R) \propto R^{-3/4}$

Dependence on mass (note: for NS/BH inner radius $R_* \propto M!$):

inner disk temperature
$$T_{
m in} \propto (\dot{M}/M^2)^{1/4}$$

Accretion Disks

20

4-25

4-23

16

Accretion Disks

25

(4.53)

4-29

ViscosityMost important unknown in accretion disk theory: viscosity
even though it dropped out of
$$T(R)$$
!Earth: viscosity of fluids typically due to molecular interactions (molecular
viscosity).Kinematic viscosity:
 $\nu_{mol} \sim \lambda_{mfp}c_s$ (4.47)where the mean free path
 $\lambda_{mfp} \sim \frac{1}{n\sigma} \sim 6.4 \times 10^4 \left(\frac{T^2}{n}\right) \text{ cm}$ (4.48)
and the speed of sound
 $c_s \sim 10^4 T^{1/2} \text{ cm s}^{-1}$ (4.49)
such that $\nu_{mol} \sim 6.4 \times 10^8 T^{5/2} n^{-1} \text{ cm}^2 \text{ s}^{-1}$ (4.50)Accretion Disks24ViscosityViscosityViscosity important when Reynolds number small ("laminar flow"), where
 $Re = \frac{\text{inertial force}}{\text{viscous force}} \sim \frac{\rho R v}{\rho v} = \frac{R v}{v}$ Viscosity upprical accretion disk parameters:Remol $\sim 2 \times 10^{14} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{R}{10^{10} \text{ cm}}\right)^{1/2} \left(\frac{n}{10^{15} \text{ cm}^{-3}}\right) \left(\frac{T}{10^4 \text{ K}}\right)^{-5/2}$ (4.52) \implies Molecular viscosity is irrelevant for astrophysical disks!since Re $\gtrsim 10^3$: turbulence \Longrightarrow Shakura & Sunyaev posit turbulent viscosity

 $\nu_{\rm turb} \sim v_{\rm turb} \ell_{\rm turb} \sim \alpha \, c_{\rm s} \, \cdot H$

where $\alpha \lesssim$ 1 and $\ell_{\rm turb} \lesssim H$ typical size for turbulent eddies.

Accretion Disks

26

4-31

Thin Disks: Comparison with observations

2