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Accretion in X-Ray Binaries

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

4–2

Introduction 1

Introduction

X-ray binaries are powered by accretion

=⇒ need to look at accretion as a physical mechanism.

Unfortunately, this will have to be somewhat theoretical, but this cannot be avoided. . .

Structure of this chapter:

1. Accretion Luminosity: Eddington luminosity

2. Accretion Disks: Theory

3. Accretion Disks: Confrontation with observations
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Introduction 2
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Accretion Luminosity 4

Eddington luminosity, IV

M
m

S
Assume mass M spherically

symmetrically accreting ionized

hydrogen gas.

At radius r, accretion produces

energy flux S.

Important: Interaction between

accreted material and radiation!



I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

4–6

Accretion Luminosity 9

Eddington luminosity, IX

Fg

Frad

Accretion is only possible if gravitation dominates:

GMmp

r2
>

σTS

c
=

σT

c
·

L

4πr2
(4.8)

and therefore

L < LEdd =
4πGMmpc

σT
(4.9)

or, in astronomically meaningful units

L < 1.3 × 1038 erg s−1 ·
M

M⊙
(4.10)

where LEdd is called the Eddington luminosity.

But remember the assumptions entering the derivation: spherically symmetric
accretion of fully ionized pure hydrogen gas.
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Accretion Luminosity 10

Eddington luminosity, X

Characterize accretion process through the accretion efficiency, η:

L = η · Ṁc2 (4.11)

where Ṁ : mass accretion rate (e.g., g s−1 or M⊙ yr−1).

Therefore maximum accretion rate (“Eddington rate”):

ṁ =
LEdd

ηc2
∼ 2 × 10−8 ·

(

M

1 M⊙

)

M⊙ yr−1 (4.12)

(for η = 0.1)
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Accretion Luminosity 14

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k (4.19)

Optically thick medium: blackbody radiation

Tb =

(

L

4πR2σSB

)1/4

(4.20)

Optically thin medium: L directly converted into radiation without further

interactions =⇒ mean particle energy

Tth =
GMmp

3kR
(4.21)

Plugging in numbers for a typical solar mass compact object (NS/BH):

Trad ∼ 1 keV and Tbb ∼ 50 MeV (4.22)

Accreting objects are broadband emitters in the X-rays and gamma-rays.
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Accretion Disks 1

Roche Geometry, I

R. Hynes

Motion of gas in corotating frame around

masses M1, M2 given by

d2
r

dt2
+ 2ω ×

dr

dt
= −

1

ρ
∇P − ∇Φ

where the Roche potential:

ΦR(r) = −
GM1

|r − r1|
−

GM2

|r − r2|
−

1

2
(ω × r)2

and where

ω =

(

GM

a3

)1/2

ê



Matter comes from companion star

=⇒ accreted matter has angular momentum

=⇒ accretion disk forms.
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Accretion Disks 3

Roche Lobe Overflow, I

incident
stream

returning

stream

(after Lubow & Shu, 1975, Fig. 4)

Roche Lobe Accretion: Gas is transferred at inner Lagrange point.
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Accretion Disks 4

Roche Lobe Overflow, II

incident
stream

shockwave

(after Lubow & Shu, 1975, Fig. 4)

Roche Lobe Accretion: Gas is transferred at inner Lagrange point.

Ballistic free fall towards compact object, forms elliptical orbit

Note: ellipse rotates because of Coriolis force!

Stream intersects =⇒ shock =⇒ randomization =⇒ circular orbit forms.

Numerical simulation of disk formation by J. Blondin (NCSU)

Stream is well described by ballistic motion, outer disk radius at ∼0.5 Roche Lobe radius.
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Accretion Disks 6

Roche Lobe Overflow, IV

J. Blondin

Disk is flared at outer radii due to accretion stream impact.

J. Blondin

Shock forms over large parts of the disk.
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Accretion Disks 10

Thin Disks, II

R

H

Thin disk: no radiation pressure

=⇒ gas pressure must support disk vertically against gravitation:

GM

R2

H

R
=

1

ρ

∣

∣

∣

∣

∂P

∂z

∣

∣

∣

∣

∼
Pc

ρcH
(4.24)

where Pc characteristic pressure, ρc characteristic density.
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Accretion Disks 11

Thin Disks, III

The speed of sound is given by

c2
s =

P

ρ
(4.25)

therefore the condition for vertical support can be written as

GM

R2

H

R
∼

Pc

ρcH
=

c2
s

H
(4.26)

such that

c2
s =

GM

R

H2

R2
= v2

φ ·
H2

R2
(4.27)

where vφ =
√

GM/R = 1.2 × 1010 (M/M⊙)(R/106 cm)−1 cm s−1: Kepler

speed.

Since H/R ≪ 1:

cs ≪ vφ (4.28)

Thin accretion disks are highly supersonic.
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Accretion Disks 12

Thin Disks: Radial Structure

J. Blondin (priv. comm.)

Radial acceleration due to pressure:

1

ρ

∂P

∂R
∼

Pc

ρcR
∼

c2
s

R
∼

GM

R2

H2

R2
≪

GM

R2

(4.29)

=⇒ radial acceleration due to pressure

negligable compared to

gravitational acceleration

Thin disk: fluid motion is Keplerian

to very high degree of precision.

=⇒ for the radial velocity, vR: vR ≪ vφ
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Accretion Disks 13

Thin Disks: Vertical Structure and Mass Conservation

Amount of mass crossing radius R:

Ṁ = −2πR · Σ · vR (4.30)

where Σ: surface density of disk,

Σ(R) =

∫

n(r)dz (4.31)

and where Ṁ : mass accretion rate

Since acceleration ⊥ z

Fz ∝
GM

R2

z

R
∝ z (4.32)

vertical density profile

n(z) ∝ exp
(

−
z

H

)

(4.33)

where H : scale height (depends on details of accretion disk theory).

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

4–21

Accretion Disks 14

Thin Disks: Angular Momentum Transport, I

Most important question: angular momentum transport

Angular velocity in Keplerian disk:

ω(R) =

(

GM

R3

)1/2

(4.34)

(“differential rotation”)

=⇒ angular momentum per mass (“specific angular momentum”):

L = R · v = R · Rω(R) = R2 ω(R) ∝ R1/2 (4.35)

=⇒decreases with decreasing R!

Total angular momentum lost when mass moves in unit time from R + dR to R:

dL

dR
= Ṁ ·

d(R2ω(R))

dR
(4.36)
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Accretion Disks 15

Thin Disks: Angular Momentum Transport, II

Since L changes: accreting matter needs to lose angular momentum. This is

done by viscous forces excerting torques:

Force due to viscosity per unit length:

F = νΣ · ∆v = νΣ · R
dω

dR
(4.37)

where ν: coefficient of kinematic viscosity

Therefore total torque

G(R) = 2πRF · R = νΣ2πR3

(

dω

dR

)

(4.38)

and the net torque acting on a ring is

dG

dR
dR (4.39)

=⇒This net torque needs to balance change in specific angular momentum in

disk.
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Accretion Disks 16

Thin Disks: Angular Momentum Transport, III

Balancing net torque and angular momentum loss gives:

Ṁ
d(R2ω)

dR
= −

d

dR

(

νΣ2πR3 dω

dR

)

(4.40)

Insert ω(R) = (GM/R3)1/2 and integrate:

νΣR1/2 =
Ṁ

3π
R1/2 + const. (4.41)

const. obtained from no torque boundary condition at inner edge of disk at

R = R∗: dG/dR(R∗) = 0, such that

νΣ =
Ṁ

3π

[

1 −

(

R∗

R

)1/2
]

(4.42)

Therefore the viscous dissipation rate per unit area is

D(R) = νΣ

(

R
dω

dR

)2

=
3GMṀ

4πR3

[

1 −

(

R∗

R

)1/2
]

(4.43)
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Accretion Disks 17

Thin Disks: Temperature Profile, I

The viscous dissipation rate was

D(R) = νΣ

(

R
dω

dR

)2

=
3GMṀ

4πR3

[

1 −

(

R∗

R

)1/2
]

(4.43)

If disk is optically thick: Thermalization of dissipated energy

=⇒ Temperature from Stefan-Boltzmann-Law:

2σSBT
4 = D(R) (4.44)

(disk has two sides!) and therefore

T (R) =

{

3GMṀ

8πR3σSB

[

1 −

(

R∗

R

)1/2
]}1/4

(4.45)

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

4–25

Accretion Disks 20

Thin Disks: Temperature Profile, IV

Inserting astrophysically meaningful numbers:

T (R) =

{

3GMṀ

8πR3σSB

[

1 −

(

R∗

R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4

(

L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM , R = (1 − (R∗/R)1/2).

Radial dependence of T :

T (R) ∝ R−3/4

Dependence on mass (note: for NS/BH inner radius R∗ ∝ M !):

inner disk temperature Tin ∝ (Ṁ/M 2)1/4
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Accretion Disks 21

Thin Disks: Emitted Spectrum, I

ν2

ν
1/3 ν

0

exp(−h   /kT)ν

log ν

lo
g 

F

If disk is optically thick, then locally emitted spectrum is black body.

Total emitted spectrum obtained by integrating over disk

Fν =

∫ Rout

R∗

B(T (R)) 2πRdR (4.46)

Resulting spectrum looks essentially like a stretched black body.
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Accretion Disks 22

Thin Disks: Emitted Spectrum, II

local BB

metals
H+He

Hubeny et al., 2001, Fig. 13

In reality: accretion disk

spectrum depends on

• elemental composition

(“metallicity”)

• viscosity (“α-parameter”)

• ionization state and

luminosity of disk (Ṁ )

• properties of compact object

and many further parameters

Until today: no really

satisfactory disk model

available.
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Thin Disks: Emitted Spectrum, III

Fe XVII − Fe XXIII

Fe XXV

F
e 

X
X

V
II

Fe
 I 

− 
Fe

 X
V

I

Fe XXVI

Fe
 X

X
IV

Fe species in a disk around a Galactic BH (Davis et al., 2005, Fig. 6)
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Accretion Disks 24

Viscosity

Most important unknown in accretion disk theory: viscosity

even though it dropped out of T (R)!

Earth: viscosity of fluids typically due to molecular interactions (molecular

viscosity).

Kinematic viscosity:

νmol ∼ λmfpcs (4.47)

where the mean free path

λmfp ∼
1

nσ
∼ 6.4 × 104

(

T 2

n

)

cm (4.48)

and the speed of sound

cs ∼ 104T 1/2 cm s−1 (4.49)

such that

νmol ∼ 6.4 × 108 T 5/2n−1 cm2 s−1 (4.50)
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Accretion Disks 25

Viscosity

Viscosity important when Reynolds number small (“laminar flow”), where

Re =
inertial force

viscous force
∼

ρRv

ρν
=

Rv

ν
(4.51)

Follows from Navier-Stokes Equations

Using typical accretion disk parameters:

Remol ∼ 2 × 1014

(

M

M⊙

)1/2 (

R

1010 cm

)1/2
(

n

1015 cm−3

)

(

T

104 K

)−5/2

(4.52)

=⇒ Molecular viscosity is irrelevant for astrophysical disks!

since Re & 103: turbulence =⇒ Shakura & Sunyaev posit turbulent viscosity

νturb ∼ vturbℓturb ∼ α cs · H (4.53)

where α . 1 and ℓturb . H typical size for turbulent eddies.
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Accretion Disks 26

Viscosity

R. Müller

Mechanical analogy of MRI: spring in

differentially rotating medium.

Physics of turbulent viscosity is

unknown, however, α prescription

yields good agreement between

theory and observations.

Possible origin: Magnetorotational

instability (MRI): MHD instability

amplifying B-field inhomogeneities

caused by small initial radial

displacements in accretion disk

=⇒ angular momentum transport
(Balbus & Hawley 1991, going back to Velikhov
1959 and Chandrasekhar (1961).
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Thin Disks: Comparison with observations 1

Galactic Black Holes

Energy [keV]

10-4

10-3

10-2

10-1

E
 ×

 p
h 

cm
-2

 s
-1

 k
eV

-1

3 5 10 20

Obs28

Obs29

Obs30
Obs31

LMC X-3, (Wilms et al., 2001)

Problem with AGN: peak of

disk in UV

=⇒ Galactic Black Holes: T is

higher

Find ok agreement between

accretion disk models and

theory.

In general: models with just

T ∝ r−3/4 and no additional

(atomic) physics seem to work

best?!?
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Thin Disks: Comparison with observations 2

Galactic Black Holes

(Davis, Done & Blaes, 2006)

Comparison of

self-consistent accretion

disk model with LMC X-3

data =⇒ good agreement,

although values of α

smaller than expected (fits

find 0.01 < α < 0.1

instead of 0.1–0.8).

Top red line: inferred accretion disk
spectrum without interstellar
absorption.


