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Wind Accretion 1

Wind Accretion

Early type stars (O, B, mass & 10 M⊙):

• strong winds, driven by radiation pressure in absorption lines

• mass loss rates 10−10 to 10−6 M⊙ yr−1

• Wind velocity

v(r) ∼ v∞

(

1 −
R⋆

r

)β

(4.54)

with v∞ ∼ 2000 km s−1 and β ∼ 0.5 . . . 1.0

A fraction of the wind can be accreted by a compact object

=⇒ ∼spherical accretion

=⇒ Bondi-Hoyle accretion

(Bondi & Hoyle, 1944)

4–35

The simplest case of wind accretion is spherically symmetric accretion.

For spherically symmetric accretion, we can derive the exact solution for the gas flow from the equations of gas dynamics:

Conservation of mass is described by the continuity equation:
∂ρ

∂t
+ ∇ · (ρv) = 0 (4.55)

while the conservation of momentum is described by the Euler equation

ρ
∂v

∂t
+ ρv · ∇v · ∇v = −∇P + f (4.56)

where f is a force density (force per unit volume).

By definition, in the spherically symmetric case the flow has only a radial component. Furthermore, if the flow is steady, then all time derivatives vanish. This means that
the equation of continuity now reads

∇ · (pv) =
1

r2

d

dr

(

r2ρv
)

= 0 (4.57)

and therefore
r2ρv = const. = C (4.58)

The constant is related to the mass accretion rate: Since the inward flux of mass is given by ρ|v|, the mass accretion rate is

Ṁ = 4πr2ρ|v| (4.59)

and therefore

C =
Ṁ

4π
(4.60)

To obtain the velocity profile, we use the Euler equation (Eq. 4.56). Because of Newton’s law of gravitation

F =
GMm

r2

r

r
(4.61)

the force density has a radial component only and is given by

f = −
GMρ

r2
(4.62)

Inserting this into Euler’s equation then results in

ρv
dv

dr
= −

dP

dr
−

GMρ

r2
(4.63)
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which simplifies to

v
dv

dr
= −

GM

r2
−

1

ρ

dP

dr
(4.64)

This differential equation can be solved under the boundary condition of some velocity at infinity. Furthermore, we need to know the equation of state, i.e., how the pressure
relates to other quantities in the system. Here, we will be using the polytropic equation of state

P = Kργ (4.65)

where K is some constant. As shown in lectures on thermodynamics, if the gas is isothermal, then γ = 1, if the flow is adiabatic instead, then γ = 5/3 (γ is the ratio of
specific heats).

With this equation of state, the speed of sound is

c2
s =

∂P

∂ρ
= Kγργ−1 (4.66)

We now insert the equation of state into Eq. (4.64):

v
dv

dr
= −

GM

r2
−

1

ρ
γKρ−γ−1 dρ

dr
= −

GM

r2
− c2

s
1

ρ

dρ

dr
(4.67)

But because of Eq. (4.57)
1

r2

d

dr

(

r2ρv
)

= 0 (4.57)

we have
1

r2

(

dρ

dr

(

r2v
)

+ ρ
d

dr

(

r2v
)

)

= 0 ⇐⇒
1

ρ

dρ

dr
= −

1

vr2

d

dr

(

r2v
)

(4.68)

Inserting this into Eq. (4.67) gives

v
dv

dr
= −

GM

r2
− c2

s
1

vr2

d

dr

(

r2v
)

= −
GM

r2
− c2

s

(

−
2

r
−

1

v

dv

dr

)

(4.69)

Multiplying by v then results in

v2 dv

dr
= −

GMv

r2
+

2v

r
c2

s + c2
s
dv

dr
(4.70)

and therefore
(

v2 − c2
s

) dv

dr
= v

(

2c2
s

r
−

GM

r2

)

(4.71)
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Wind Accretion 2

Bondi-Hoyle Accretion, I

Spherical symmetric accretion:

(

v2 − c2
s

) dv

dr
= v

(

2c2
s

r
−

GM

r2

)

(4.71)

For r large: right hand side is positive.

Since dv/dr < 0 for accretion, this means that for large r: v < cs.

Similarly, for small r: v > cs

=⇒ sonic point for v = cs at

rsonic =
GM

2c2
s

(4.72)

=⇒ If the flow goes supersonic, it does so at r = rsonic

Note that cs depends on r, several other solutions are possible, but the above one is the most common one
for the objects we’re looking at. See Holzer & Axford (1970) for details.
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Wind Accretion 3

Bondi-Hoyle Accretion, II

To finish the discussion of Bondi-Hoyle accretion, we now explicitly integrate

Euler’s equation

v
dv

dr
+

GM

r2
+

1

ρ

dP

dr
= 0 (4.64)

over r:
∫

v
dv

dr
dr +

∫

GM

r2
dr +

∫

dP

ρ
= 0 (4.73)

inserting dP = Kγργ−1dρ and integrating then gives the Bernoulli integral

1

2
v2 +

γ

γ − 1
Kργ−1 −

GM

r
= const. (4.74)

which obviously is related to energy conservation and can be written as

1

2
v2 +

c2
s

γ − 1
−

GM

r
= const. =

cs,∞

γ − 1
(4.75)

where cs,∞ is the speed of sound at r = ∞.

This follows since v(r → ∞) = 0.
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Wind Accretion 4

Bondi-Hoyle Accretion, III

From Eq. (4.75) we can now determine the speed of sound at the sonic point

c2
s(rsonic) = cs,∞

(

2

5 − 3γ

)1/2

(4.76)

and the mass accretion rate is

Ṁ = 4πr2ρ|v| = 4πr2
sonicρ(rsonic)cs(rsonic) (4.77)

Since c2
s ∝ ργ−1,

ρ(rsonic) = ρ∞

(

cs(rsonic)

cs,∞

)2/(γ−1)

(4.78)

Therefore

Ṁ = πG2M 2 ρ∞
c3

s,∞

(

2

5 − 3γ

)(5−3γ)/2(γ−1)

(4.79)
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Wind Accretion 5

Bondi-Hoyle Accretion, IV

Mach number

(M = v(r)/cs(r)) as

a function of radial

distance,

ξ = r/rsonic, for all

possible solutions of

the spherical

accretion problem.

(Holzer & Axford, 1970, Fig. 1)

I

E
F

C
O

DRI

L

A
I

N

R

D
N

X
A

E
A

ESI
I

C

M

L
M

V
A

AI

A
D

R

E

L
G

E

4–40

Wind Accretion 6

Bondi-Hoyle Accretion, V

Taking γ = 5/3, Eq. (4.79) becomes

Ṁ = πG2M 2 ρ∞
c3

s,∞

= π

(

GM

c2
s,∞

)2

ρ∞cs,∞

= πr2
accρ∞cs,∞

(4.80)

where the accretion radius is defined as

racc =
GM

c2
s,∞

(4.81)

Often, racc is defined as racc = 2GM/cs, see next slide for the reason why.

racc defines the approximate radius of influence of an accreting body.
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Wind Accretion 7

Wind accretion, I

If the ambient medium is not at rest: wind accretion. In principle, we can do a similar calculation

as for Bondi-Hoyle accretion, however, this would take too long, so let’s do an approximate

treatment here.

Let the wind’s velocity be v∞. The material in the wind is captured once

1

2
v2
∞ =

GM

racc
(4.82)

such that the accretion radius for wind accretion is

racc =
2GM

v2
∞

(4.83)

. . . explaining why many people like to have a factor 2 also in the definition of racc for Bondi-Hoyle accretion.

Therefore, analoguously to Eq. (4.80),

Ṁ = πr2
accρ∞v∞ =

4πG2M2ρ∞
v3
∞

(4.84)
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Wind Accretion 8

Wind accretion, II

To estimate the typical parameters of a wind accretor, we need to estimate v∞ for a compact

object at a distance a from the donor star

The typical velocity consists of two contributions:

1. The stellar wind velocity profile

vwind(a) ∼ vwind,∞

(

1 −
R⋆

a

)β

(4.54)

2. The orbital velocity of the compact object

vcompact(a) =

√

GM

a
(4.85)

Therefore

v2
∞ ∼ v2

wind + v2
compact =

GM

a
+ v2

wind,∞

(

1 −
R⋆

a

)2β

∼
GM

a
+ v2

wind,∞ (4.86)

the last is true assuming that the compact object is outside of the wind acceleration zone
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Wind Accretion 9

Wind accretion, III

Finally, making use of the fact that the wind density is

ρ∞ =
ṀW

4πa2vwind,∞
(4.87)

where ṀW is the wind loss rate of the donor.

Therefore, the accretion rate of the compact object is

Ṁ =
G2M 2

a2vwind,∞

(

GM
a + v2

wind,∞

)3/2
ṀW

=







(

GM
av2

wind,∞

)1/2

ṀW for vorbit ≫ vwind,∞

G2M 2

a2v4
wind,∞

ṀW for vorbit ≪ vwind,∞

(4.88)

So, for M = 1.44 M⊙, vwind,∞ = 500 km s−1, a = 107 km, Ṁ = 6 × 10−3ṀW, i.e., the Eddington

rate (ṀEdd = 2.9 × 10−8 M⊙ yr−1 for 1.44 M⊙) is reached for ṀW = 4.8 × 10−6 M⊙ yr−1, which

is very realistic.

Realistic hydrodynamical

computations are difficult

(asymmetry of accretion

process, ionization of wind,

large range of length-scales

involved,. . . ).
(Blondin 1994, Fig. 4)
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Wind Accretion 11

Accretion in HMXB

Strömgren sphere

tidal stream

photoionization wake

compact
object

Donor Star

accretion wake

Principal components for

wind-accretion:

• Ionized Strömgren

region (wind ionized by

X-rays from compact

object).

• Accretion shock around

compact object (since

vorb > cs).

• Ionization wake where

material is overdense.
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Wind Accretion 12

Accretion in HMXB

Strömgren sphere

tidal stream

photoionization wake

Vela X-1

HD 77581

accretion wake

In realistic HMXB, because

the accreted material still has

some angular momentum, a

small accretion disk still

forms.

J. Blondin: “The disk is being BASHED by the stellar wind, BATTERED

by the tidal stream, and BLASTED by X-rays”
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Wind Accretion 13

Accretion in HMXB
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RXTE-ASM 2–10 keV lightcurve of the HMXB Vela X-1
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Wind Accretion 14

Accretion in HMXB
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X-rays from central source heat disk surface, drive a strong wind.
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