

5–1

Accretion onto Magnetized Neutron Stars

Be Accretion Eccentric Orbit

(Kretschmar 1996, Dissertation AIT, Abb. 2.6) Some early type stars (O9–B2) have very high rotation rates \implies Formation of disk-like stellar wind at equator. Line emission from disk: Be phenomenon.

Neutron Sta

Collision of neutron star with disk results in irregular X-ray outbursts.

Example: A0535+26.

5-4

Table 1.3. The orbital periods of HMXBs

Source	Alternative name	Orbital period (d)	Properties ^a	Reference
X2030+407	Cyg X-3	0.2	WR	1,2,3
X0532-664	LMC X-4	1.4	SG, P	4,5,6
X0538-641	LMC X-3	1.7	Be, BHC	7
X1119-603	Cen X-3	2.1	SG, P	8
X1700-377	HD153919	3.41	SG	9
X1538-522	QV Nor	3.73	SG, P	10,11
X0115-737	SMC X-1	3.89	SG, P	12
X0540-697	LMC X-1	4.22	SG, BHC	13
X1956+350	Cyg X-1	5.6	SG, BHC	14
X1907+097		8.38	B, P	15
X0900-403	Vela X-1	8.96	SG, P	16
X1657-415		10.4	SG?, P	17
X0114+650	V662 Cas	11.6	SG	18
X1909+048	SS433	13.1	SG, J	19
X0535-668	A0538-66	16.7	Be, T, P	20
X0115+634	V635 Cas	24.3	Be, T, P	21
X0236+610	LS I +61 303	26.45	Be	22
X1553-542		30.6	Be?, T, P	23
X0331+530	BQ Cam	34.25	Be, T, P	24
X1223-624	GX301-2	41.5	SG, P	25,26,27
X2030+375		45-47	Be, T, P	28
X0535+262	HD245770	111	Be, T, P	29
X1258-613	GX304-1	133?	Be, P	30
X1145-619	Hen 715	187.5	Be, P	31

⁴The source properties are indicated by 'SC' - supergiant, 'Be' - Be star, 'P' - pulsar, 'BHC' -black-hole candidate, 'T - transient, 'WR' - Wolf-Rayet, 'J' - Jets. References: 'Parsignaul et al. 1972; 'Sanford & Hawkins 1972; 'Jvan Kerkwijk et al. 1992; 'Li et al. 1978; 'White 1978; 'Chevaliet & Ilovaisky 1977; 'Cowley et al. 1983; 'Schreier et al. 1977b; 'Jones, Forman and Liller 1973; ¹⁰Becker et al. 1977; 'IDavison, Watson and Pye 1977; 'ISchreier et al. 1972; 'Pituchings et al. 1983; 'Bchreier et al. 1987; 'Marshall & Ricketts 1980; ¹⁶Ulmer et al. 1972; 'I'Chakrabarty et al. 1983; 'B'Crampton et al. 1983; 'Taylor & Gregory 1962; 'Z'Kelley et al. 1983; ³⁵Schniston, et al. 1983; '¹³Watson et al. 1983; ³⁶Kelley et al. 1980; 'Z'White et al. 1978; ³⁵Jarmar et al. 1989c, i²⁹Priedhorsky & Terrell 1983a; ³⁰Priedhorsky & Terrell 1983b; ³¹Watson et al. 1981.

White et al., 1995, Tab. 1.3

Table 1.4. Pulse periods from X-ray binaries

Source	Alternative	Pulse period	Orbital period	Туре	Reference
	name	(s)	(d)		
X0535-668	A0538-66	0.069	16.7	HMXB	1
X0115-737	SMC X-1	0.71	3.89	HMXB	2
X1656+354	Her X-1	1.24	1.7	LMXB	3
X0115+634	V635 Cas	3.6	24.3	HMXB	4
X0332+530	BO Cam	4.4	34.25	HMXB	5
X1119-603	Cen X-3	4.8	2.1	HMXB	6
X1048-594		6.4		?	7
X2259+587		7.0		LMXB	8
X1627-673		7.7	0.029	LMXB	9
X1553-542		9.3	30.6	HMXB	10
X0834-430	GR0834-430	12.2	-	?	11
X0532-664	LMC X-4	13.5	1.4	HMXB	12
X1417-624		17.6		HMXB	13
X1843+009		29.5		?	14
X1657-415		38	10.4	HMXB	15
X2030+375		42	45.6	HMXB	16
X2138+568	Cep X-4	66		?	17
X1836-045		81		?	14
X1843-024		95		?	14,34
X0535+262		104	111	HMXB	18
X1833-076	Sct X-1	111		?	19
X1728-247	GX1+4	114	304?	LMXB	20,21,22
X0900-403	Vela X-1	283	8.96	HMXB	23
X1258-613	GX 304-1	272	133?	HMXB	24,25
X1145-614		298		HMXB	26,27
X1145-619		292	187.5	HMXB	26,27
X1118-615	A1118-61	405		HMXB	28
X1722-363		413		?	29
X1907+097		438	8.38	HMXB	30
X1538-522	QV Nor	529	3.73	HMXB	31
X1223-624	GX301-2	696	41.5	HMXB	32
X0352-309	X Per	835		HMXB	33

References: 'Skinner et al. 1982; 'Lucke et al. 1976; 'Tananbaum et al. 1972; 'Cominsky et al. 1978; 'Stella et al. 1983; 'Giacconi et al. 1971; 'Corbet & Day 1990; 'Gregory & Fahlman 1980; 'Ragnaport et al. 1977; 'Welley et al. 1985; 'Grebene & Sunyaev 1991; 'Welley et al. 1983a; 'IKelley et al. 1981; 'Koseiberg et al. 1995a; 'White & Pravdo 1979; 'Brarnar et al. 1996; 'Ti Woshie & Al. 1981; 'Mosseiberg et al. 1975; 'Nyama et al. 1991b; 'Welley et al. 1973; 'White et al. 1976a; 'Zstrickman et al. 1980; 'ZMocCintock et al. 1975; 'White et al. 1977; 'Tawar et al. 1989; 'Awhite et al. 1978; 'Tawar et al. 1980; 'Tawar et al. 1997; 'Tawar et al. 1989; 'Makahima et al. 994; 'Davison et al. 1977; 'White et al. 1976; 'Tawar et al. 1989; 'Makahima et al. 'Bayar', 'Davison et al. 1977; 'White et al. 1976; 'White et al. 1976; 'Kogman et al. 1980; 'Smart et al. 1977; 'White et al. 1976;

	System*	10	h)	$P_{ij,li}$ i	$P_{i,1}$ ³ [d]	Companion MK Type	R efe rences
	Low-mass binaries						
2	GR0 1144-21		+1.3	1,417	112		11
	H er A +1	19.2	+17.3	12.4	1.0	HZ Her [A3-B]	81.8
	40 1828-87	1212	10.00	121	1 32 8 9	KZ TrA [low-mass dwarf]	191-21
	4U 1121-247 U.X. 1+4	13	+ 4.8	21		V2 118 Uph [518 11]	Matt
	SMC X 1	1 III A	A16	1.7.17	1.6.5	SUICE IN T	N 1
	Con X 1	111.1	1.1.1	4.8.1	111	1775 Can 105 M	Si nu
	R X 11 6 46 1-44 19	151 7	111	10.5	15.4	HD 43738 [05n]	110-11
	LMCX A	175.1	11.5	10.5	1.41	St. Ph (0.7 111 10	111
	0.10 167-415	1 44 4	41.1	17.7	11.4	BI-fish	10
	Vela X-1	242.1	+1.3	28.2	1.15	BD77511 BL3D	14
	1E 1145-414	235.5	- iu-	25.7	1.61	VEH Cen Billie	ius i
	4U 1917+13	41.7	+1.3	41.5	5,25	81	16
	4U 1538-52	117.4	+2.4	511	1.71	0 V Nor B Iab	1171.1191
	GX 111-2	111.1	- iu	65.1	41.3	Wray 577 [B1.5 la]	19 ,2 0
	Transien! Be-binary syste	10.1					
	A 1014-47	276.3	+12.2	1163	16.7	B1 II-IVe	21
	4U # 115+ 61	125.3	+14	1,6.1	24.3	Vill Car Br	[22],[23]
	V 1112+11	146.1	+2.2	4.17	14.2	BQ Cam Br	[2:4]
	28 1417-624	101	+ 1.6	17.5	42.1	0 Br	[25]
	EX 0 2111+175	77.2	+14	41.7	46.1	Be	[26],[27]
	GR0 J 1111 47	2.93 3	+18	91.5	R 2.49	Be	[28],[29]
	$\lambda = 1111 + 23$	191.4	+2.8	9.5	111	H D E2 41771 [03.715]	P 10
	GA 114=1	112.1	+ 12	272	11 1 [2]	V Ball Cen [B2 Vne]	1.1
	40 1141 4 18	2.53 A	- 12	23.2	10 Y	Ben (D) (B1Vne)	121
	A 110 H 1	292.4	10.0	41.1		THE OTHER PARTY	11
	40 10 2 + 11 5	141.1	- 111	111		A Per [03 III.Ve]	14
	R X JI 198 3 44 121	123.3	11	24.11		L 51 + 11 244 BI 118	141
	ny han and						
	12 11 4 511	155.1	+ 10	6.4.4			10.71
	157 1158 - 586	100.0	11	6.5.5			111
	R X 10730 4-1195	3 44 3		5.1.5			641
	411 8 147 + 6 14	133.4	1.1	5.63			1411
-	Transient and end with or	n nudel e	rminul r	manian			1001
	RX J1152-710	112.1	-41.1	2.76			N 01
	R X J1512 3 4 6 26	177.1	11.1	414			42
	GR0 1171 - 7	1.4	+1.5	4.41	23.8		1421
	1E 1151.1-7147	112.3	44.6	5.3			11.1
	2 S 1111-14	117.3	41.3	5.2.5	11.5		44
	GS 1814-411	262.8	+ 1.5	12 .3	11.6		45 , 46
	GRO J 1949+12	64.5	1.8	18.7			[47]
	GS 3542 + 11	11.1	+1.7	25.5			48
	GS 2118+16 [Cep X 42]	55 J	+1.3	66 <u>2</u>			49
	GS 1842-824	11.2	- 10	54.5			P10
	Set X-1	24.3	-12	11.1			P 11
	GR0 J2458+42	57.5	+2.7	15.5	8118		521.531

Magnetospheric accretion, I

Accretion models has to take into account that central neutron star has $\sim 10^{12}$ G B-field. Far-field:

$$B(r) = \left(\frac{R}{r}\right)^3 B_{\rm p} \quad {\rm hence} \quad P_{\rm mag} = \frac{B^2}{8\pi} = \left(\frac{R}{r}\right)^6 B_{\rm p}^2$$

On the other hand, the accreting material has a ram-pressure

$$P_{\text{ram}} = \rho v^2$$
 or $P_{\text{ram}} = \frac{\dot{M}}{4\pi r^2} \left(\frac{2GM}{r}\right)^{1/2}$

assuming free fall ($v = (2GM/r)^{1/2}$) and spherical symmetry ($\dot{M} = 4\pi r^2 \rho v$). For $P_{mag} > P_{ram}$, B-field dominates \implies plasma couples to B-field lines at the Alfvén radius

$$\begin{split} r_{\rm mag} &= \left(\frac{8\pi^2}{G}\right)^{1/7} \left(\frac{R^{12}B_{\rm p}^4}{M\dot{M}^2}\right)^{1/7} \\ &= 1800\,{\rm km}\,\left(\frac{R}{10\,{\rm km}}\right)^{12/7} \left(\frac{B}{10^{12}\,{\rm G}}\right)^{4/7} \left(\frac{M}{1.4\,M_{\odot}}\right)^{-1/7} \left(\frac{\dot{M}}{10^{-7}\,M_{\odot}\,{\rm yr}^{-1}}\right)^{-2/7} \end{split}$$

For typical NS parameters, the accretion close to the NS is dominated by the *B*-field.

High Mass X-ray Binaries

3

Accretion Column, II

extraordinary mode: $E\mbox{-field}$ of photons perpendicular to plane spanned by $B\mbox{-field}$ and direction of propagation.

Continuum and resonant scattering possible.

Cross section:

$$\sigma_{\rm ext}(\varphi) = \sigma_{\rm T} k(\epsilon) + \sigma_\ell \phi_\ell(E, E_{\rm cyc}, \varphi)$$

where

• σ_{ℓ} : resonant cross section,

$$\sigma_\ell \sim 1.9 imes 10^4 rac{\sigma_{\mathsf{T}}}{B_{12}}$$

• $\phi_{\ell}(E, E_{\rm cyc}, \varphi)$: line profile (~ Gaussian if taking thermal broadening into account)

Accretion Column: Continuum Formation

5-28

5-27

Accretion Column, III

Approximate cross sections outside of resonance: Mode averaged cross section $\parallel B \ (\varphi = 0^{\circ})$:

$$\sigma_{\parallel} = \frac{1}{2} \left(\sigma_{\rm ord}(\mathbf{0}^\circ) + \sigma_{\rm ext}(\mathbf{0}^\circ) \right) \sim \sigma_{\rm T} \left(\frac{E}{E_{\rm cyc}} \right)^2$$

Mode averaged cross section $\perp \boldsymbol{B}$ ($\varphi = 90^{\circ}$):

$$\sigma_{\perp} = \frac{1}{2} \left(\sigma_{\rm ord}(90^{\circ}) + \sigma_{\rm ext}(90^{\circ}) \right) = \sigma_{\rm T} + \sigma_{\rm T} \left(\frac{E}{E_{\rm cyc}} \right)^2 \sim \sigma_{\rm T}$$

Plasma is much more transparent parallel to the *B*-field than perpendicular to the *B*-field!

For order of magnitude estimates, use mean energy of radiation field, $\langle E \rangle$, instead of E in above equations.

Accretion Column, IV

Basko & Sunyaev (1976): Radiation pressure becomes important once

$$L_{\rm X} \sim L_{\rm crit} = 2.72 \times 10^{37} \, {\rm erg \, s^{-1}} \frac{\sigma_{\rm T}}{\sqrt{\sigma_{\perp} \sigma_{\parallel}}} \left(\frac{M}{M_{\odot}}\right) \left(\frac{r_{\rm 0}}{R}\right)$$

For $L_{\rm X}\gtrsim L_{\rm crit}$ flow is super-Eddington and radiation pressure \gg gas pressure.

 \implies radiation pressure dominated shock

("accreted matter acts as test particles").

implies continuous velocity transition over few Thomson lengths, different from traditional hydrodynamical shocks!

For $L_X \leq L_{crit}$: breaking of plasma by hydrodynamical shock, "Coulomb friction", or nuclear collisions (stopping length \sim 30–60 g cm⁻²).

see, e.g., Basko & Sunyaev (1976), Langer & Rappaport (1982), Braun & Yahel (1984)

What physical process is the most important is still very much debated.

Accretion Column: Continuum Formation

9

5-29

5 - 38Continuum Formation: State of the Art Mathematical implementation of the model: calculate Green's function, f_{G} , for response of column: $v \frac{\partial f_{\rm G}}{\partial x} = \frac{dv}{dx 3} \frac{\epsilon}{\partial \epsilon}$ bulk Comptonization (1st order Fermi) $+\frac{\partial}{\partial x}\left(\frac{c}{3n_{\rm e}\sigma_{\parallel}}\frac{\partial f_{\rm G}}{\partial x}\right) \quad \text{spatial diffusion in } x\text{-direction (} \parallel \text{column axis)}$ $-\frac{f_{\rm G}}{t_{\rm esc}}$ escape from the column $+ \frac{\dot{N}_0 \delta(\epsilon - \epsilon_0) \delta(x - x_0)}{\pi r_n^2 \epsilon_n^2} \quad \text{photon injection}$ $-\beta v_0 f_{\rm G} \delta(x-x_0)$ absorption in the thermal mound where • ϵ : photon energy • n_e: electron number density • $v_0 = v(x_0)$: flow velocity at source location x_0 • $\epsilon^2 f_0 d\epsilon$: photon number density at x_0 • β : absorptivity of the mound, determined self-consistently Accretion Column: Continuum Formation 19 5-39 Continuum Formation: State of the Art Becker & Wolff (2005a,b): bulk Comptonization only (via Kompaneets equation, i.e., no Compton recoil) \implies no cutoff, $\Gamma > 2$ This limitation has been removed by Becker & Wolff (2007). Physical processes for scattering: bulk Comptonization thermal Comptonization (via Kompaneets equation). Seed photons: bremsstrahlung (from within column) cyclotron radiation (from within column) black body radiation (from bottom of column)

