

8–1

XRB Evolution

3. Nuclear timescale: time needed to exhaust nuclear fuel at current luminosity L

$$\tau_{\rm nuc} = 10^{10} \,{\rm yr} \cdot \frac{M/L}{M_{\odot}/L_{\odot}} = 10^{10} \,{\rm yr} \cdot \left(\frac{M}{M_{\odot}}\right)^{-2.5}$$
 (8.3)

Introduction
Up to now we have looked at X-ray Binaries as individual sources
Now: properties of X-ray binaries as a class of objects: statistics, general properties.
⇒ Input to evolution models: where do XRB come from?
1. XRB Distribution in our Galaxy
2. XRB Evolution Models
3. Testing evolution withXRBs in other Galaxies

Introduction

4

8-11

8

8-12

(Bhattacharya & van den Heuvel, 1991, Fig. 32)

Tests of XRB Evolution

To test theory of XRB evolution: need access to X-ray binary samples *Problem:* XRB in our Galaxy are difficult to study statistically, due to because of strong absorption in the Galactic plane

 \Longrightarrow Observe other galaxies, where much less biasing

but see (Grimm, Gilfanov & Sunyaev, 2002)!

The LMC, an irregular galaxy, from the ROSAT All Sky Survey, colors are hardness ratio (H-S)/(H+S); very red: Super Soft Sources.

8-16

Super Soft Sources

Super Soft Sources (SSS) are X-ray binaries characterized by

- extremely steep thermal spectra, $T_{
 m BB} \sim 3 imes 10^5 \, {
 m K}$
- high luminosity (close to $L_{\rm Edd}$ for M= 1 M_{\odot})

Five sources in the LMC (Cal 83, Cal 87, and others), two in the SMC, 15 in M31, many more in other galaxies

Theories for their nature (Kahabka, Pietsch & Hasinger, 1994):

- accretion disks around white dwarfs
- steady hydrogen burning on accreting WDs

Other models appear to be ruled out due to the high luminosity.

8-14

0.8

Origin and interpretation still unclear

Tests of XRB Evolution

The location of sources in an X-ray color-color diagram depends on the source type and the intrinsic absorption.

(Prestwich et al., 2003, Fig. 4)

(Carpano et al., 2005) NGC 300: nearby galaxy, point sources classified with Color-Color diagram

M31 as seen from Einstein and EXOSAT.

Andromeda nebula (M31): closest spiral galaxy to milky way (d = 690 kpc). First studies of Andromeda nebula with early imaging instruments. *Einstein:* 108 individual point sources, L_x between 5×10^{36} erg/s and $> 10^{38}$ erg s⁻¹ (Trinchieri et al., 1991), a few coincidences with SNRs. Total X-ray luminosity: $3 \times 10^{39} \text{ erg s}^{-1}$

8-19

6

M31, different deep *ROSAT* pointings (note characteristic PSPC fingerprints; Supper et al. 1997). About 400 sources detected, 50 of which are foreground (more than in *UHURU* catalogue!). Spectra or hardness ratios are compatible with accreting objects ($\Gamma \sim 2$, $N_{\rm H} \sim 10^{21}$ cm⁻²); 15 SSS found; residual diffuse emission from hot gas.

X-ray: NASA/CXC/MPE/W.Pietsch et al; Optical: NOAO/AURA/NSF/T.Rector & B.A.Wolpa

M31 with *XMM-Newton* (courtesy W. Pietsch and ESA)

M31 with XMM-Newton (2000–2004; courtesy W. Pietsch and ESA)

Center of Andromeda with Chandra: blue: very soft source close to supermassive black hole in center $(M \sim 10^7 \, M_\odot)$; other sources: XRBs

Tests of XRB Evolution

M101 with XMM-Newton (Rosemary Willat and ESA): HMXB located in star forming regions (arms!)

M82 (R. Gendler)

M82: Large population of XRBs in starburst region, hot gas flowing outwards. (Starburst caused by close encounter with M81?)

M82 (R. Gendler)

M82 (Chandra/CXC)

The Antennae (NGC 4038/4039) ⓒ David M. Jurasevich

STScI/NASA

STScI/NASA

The Antennae: an extreme example for galaxy interaction

CXC/NASA (note, image flipped compared to previous ones)

Tests of XRB Evolution

8–39

Bhattacharya, D., & van den Heuvel, E. P. J., 1991, Phys. Rep., 203, 1

Carpano, S., Wilms, J., Schirmer, M., & Kendziorra, E., 2005, A&A, 443, 103

Fabbiano, G., & White, N. E., 2006, in Compact stellar X-ray sources, ed. W. Lewin, M. van der Klis, (Cambridge: Cambridge Univ. Press), 475-506

Grimm, H.-J., Gilfanov, M., & Sunyaev, R., 2002, A&A, 391, 923

Kahabka, P., Pietsch, W., & Hasinger, G., 1994, A&A, 288, 538

Kim, D.-W., & Fabbiano, G., 2004, ApJ, 611, 846

Kong, A. K. H., DiStefano, R., Garcia, M. R., & Greiner, J., 2003, ApJ, 585, 298

Prestwich, A. H., Irwin, J. A., Kilgard, R. E., Krauss, M. I., Zezas, A., Primini, F., Kaaret, P., & Boroson, B., 2003, ApJ, 595, 719

Supper, R., Hasinger, G., Pietsch, W., Trümper, J., Jain, A., Magnier, E. A., Lewin, W. H. G., & van Paradijs, J., 1997, A&A, 317, 328

triggered star formation.