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Introduction 1

Introduction

X-ray binaries are powered by accretion

=⇒ need to look at accretion as a physical mechanism.

Unfortunately, this will have to be somewhat theoretical, but this cannot be avoided. . .

Structure of this chapter:

1. Accretion Luminosity: Eddington luminosity

2. Accretion Disks: Theory

3. Accretion Disks: Confrontation with observations



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

4–3

Introduction 2
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Accretion Luminosity 1

Eddington luminosity, I

M

Assume mass M
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Accretion Luminosity 2

Eddington luminosity, II

M
m

Assume mass M spherically

symmetrically accreting ionized

hydrogen gas.
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Accretion Luminosity 3

Eddington luminosity, III

M
m

S
Assume mass M spherically

symmetrically accreting ionized

hydrogen gas.

At radius r, accretion produces

energy flux S.
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Accretion Luminosity 4

Eddington luminosity, IV

M
m

S
Assume mass M spherically

symmetrically accreting ionized

hydrogen gas.

At radius r, accretion produces

energy flux S.

Important: Interaction between

accreted material and radiation!
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Accretion Luminosity 5

Eddington luminosity, V

Force balance on accreted electrons and protons:
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Accretion Luminosity 6

Eddington luminosity, VI

Fg

Force balance on accreted electrons and protons:

Inward force: gravitation:

Fg =
GMmp

r2
(4.1)
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Accretion Luminosity 7

Eddington luminosity, VII

Fg

Frad

Force balance on accreted electrons and protons:

Inward force: gravitation:

Fg =
GMmp

r2
(4.2)

Outward force: radiation force:

Frad =
σTS

c
(4.3)

where energy flux S is given by

S =
L

4πr2
(4.4)

where L: luminosity.



I

EF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

4–5

Accretion Luminosity 8

Eddington luminosity, VIII

Fg

Frad

Force balance on accreted electrons and protons:

Inward force: gravitation:

Fg =
GMmp

r2
(4.5)

Outward force: radiation force:

Frad =
σTS

c
(4.6)

where energy flux S is given by

S =
L

4πr2
(4.7)

where L: luminosity.

Note: σT ∝ (me/mp)
2, so negligable for protons.

But: strong Coulomb coupling between electrons and protons

=⇒ Frad also has effect on protons!
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Accretion Luminosity 9

Eddington luminosity, IX

Fg

Frad

Accretion is only possible if gravitation dominates:

GMmp

r2
>

σTS

c
=

σT

c
· L

4πr2
(4.8)

and therefore

L < LEdd =
4πGMmpc

σT
(4.9)

or, in astronomically meaningful units

L < 1.3 × 1038 erg s−1 · M

M�
(4.10)

where LEdd is called the Eddington luminosity.

But remember the assumptions entering the derivation: spherically symmetric
accretion of fully ionized pure hydrogen gas.
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Accretion Luminosity 10

Eddington luminosity, X

Characterize accretion process through the accretion efficiency, η:

L = η · Ṁc2 (4.11)

where Ṁ : mass accretion rate (e.g., g s−1 or M� yr−1).

Therefore maximum accretion rate (“Eddington rate”):

ṁ =
LEdd

ηc2
∼ 2 × 10−8 ·

(

M

1 M�

)

M� yr−1 (4.12)

(for η = 0.1)
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Accretion Luminosity 11

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k (4.13)
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Accretion Luminosity 12

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k (4.14)

Optically thick medium: blackbody radiation

Tb =

(

L

4πR2σSB

)1/4

(4.15)
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Accretion Luminosity 13

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k (4.16)

Optically thick medium: blackbody radiation

Tb =

(

L

4πR2σSB

)1/4

(4.17)

Optically thin medium: L directly converted into radiation without further

interactions =⇒ mean particle energy

Tth =
GMmp

3kR
(4.18)
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Accretion Luminosity 14

Emitted spectrum

Characterize photon by its radiation temperature, Trad:

hν ∼ kTrad =⇒ Trad = hν/k (4.19)

Optically thick medium: blackbody radiation

Tb =

(

L

4πR2σSB

)1/4

(4.20)

Optically thin medium: L directly converted into radiation without further

interactions =⇒ mean particle energy

Tth =
GMmp

3kR
(4.21)

Plugging in numbers for a typical solar mass compact object (NS/BH):

Trad ∼ 1 keV and Tbb ∼ 50 MeV (4.22)

Accreting objects are broadband emitters in the X-rays and gamma-rays.
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Accretion Disks 1

Roche Geometry, I

R. Hynes

Motion of gas in corotating frame around

masses M1, M2 given by

d2r

dt2
+ 2ω × dr

dt
= −1

ρ
∇P − ∇Φ

where the Roche potential:

ΦR(r) = − GM1

|r − r1|
− GM2

|r − r2|
−1

2
(ω × r)2

and where

ω =

(

GM

a3

)1/2

ê



Matter comes from companion star

=⇒ accreted matter has angular momentum

=⇒ accretion disk forms.
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Accretion Disks 3

Roche Lobe Overflow, I

incident
stream

returning
stream

(after Lubow & Shu, 1975, Fig. 4)

Roche Lobe Accretion: Gas is transferred at inner Lagrange point.
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Accretion Disks 4

Roche Lobe Overflow, II

incident
stream

shockwave

(after Lubow & Shu, 1975, Fig. 4)

Roche Lobe Accretion: Gas is transferred at inner Lagrange point.

Ballistic free fall towards compact object, forms elliptical orbit

Note: ellipse rotates because of Coriolis force!

Stream intersects =⇒ shock =⇒ randomization =⇒ circular orbit forms.



Numerical simulation of disk formation by J. Blondin (NCSU)

Stream is well described by ballistic motion, outer disk radius at ∼0.5 Roche Lobe radius.
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Accretion Disks 6

Roche Lobe Overflow, IV

J. Blondin

Disk is flared at outer radii due to accretion stream impact.



J. Blondin

Shock forms over large parts of the disk.



courtesy J. Blondin
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Accretion Disks 9

Thin Disks, I

R

H

Most important case: thin accretion disks, i.e., vertical thickness, H , much

smaller than radius R:

H � R (4.23)

=⇒ Requires that radiation pressure is negligable

=⇒ L � LEdd
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Accretion Disks 10

Thin Disks, II

R

H

Thin disk: no radiation pressure

=⇒ gas pressure must support disk vertically against gravitation:

GM

R2

H

R
=

1

ρ

∣

∣

∣

∣

∂P

∂z

∣

∣

∣

∣

∼ Pc

ρcH
(4.24)

where Pc characteristic pressure, ρc characteristic density.
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Accretion Disks 11

Thin Disks, III

The speed of sound is given by

c2
s =

P

ρ
(4.25)

therefore the condition for vertical support can be written as

GM

R2

H

R
∼ Pc

ρcH
=

c2
s

H
(4.26)

such that

c2
s =

GM

R

H2

R2
= v2

φ ·
H2

R2
(4.27)

where vφ =
√

GM/R = 1.2 × 1010 (M/M�)(R/106 cm)−1 cm s−1: Kepler

speed.

Since H/R � 1:

cs � vφ (4.28)

Thin accretion disks are highly supersonic.
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Accretion Disks 12

Thin Disks: Radial Structure

J. Blondin (priv. comm.)

Radial acceleration due to pressure:

1

ρ

∂P

∂R
∼ Pc

ρcR
∼ c2

s

R
∼ GM

R2

H2

R2
� GM

R2

(4.29)

=⇒ radial acceleration due to pressure

negligable compared to

gravitational acceleration

Thin disk: fluid motion is Keplerian

to very high degree of precision.

=⇒ for the radial velocity, vR: vR � vφ
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Accretion Disks 13

Thin Disks: Vertical Structure and Mass Conservation

Amount of mass crossing radius R:

Ṁ = −2πR · Σ · vR (4.30)

where Σ: surface density of disk,

Σ(R) =

∫

n(z)dz (4.31)

and where Ṁ : mass accretion rate

Since acceleration ⊥ z

Fz ∝
GM

R2

z

R
∝ z (4.32)

vertical density profile

n(z) ∝ exp
(

− z

H

)

(4.33)

where H : scale height (depends on details of accretion disk theory).
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Accretion Disks 14

Thin Disks: Angular Momentum Transport, I

Most important question: angular momentum transport

Angular velocity in Keplerian disk:

ω(R) =

(

GM

R3

)1/2

(4.34)

(“differential rotation”)

=⇒ angular momentum per mass (“specific angular momentum”):

L = R · v = R · Rω(R) = R2 ω(R) ∝ R1/2 (4.35)

=⇒decreases with decreasing R!

Total angular momentum lost when mass moves in unit time from R + dR to R:

dL

dR
= Ṁ · d(R2ω(R))

dR
(4.36)
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Accretion Disks 15

Thin Disks: Angular Momentum Transport, II

Since L changes: accreting matter needs to lose angular momentum. This is

done by viscous forces excerting torques:

Force due to viscosity per unit length:

F = νΣ · ∆v = νΣ · Rdω

dR
(4.37)

where ν: coefficient of kinematic viscosity

Therefore total torque

G(R) = 2πRF · R = νΣ2πR3

(

dω

dR

)

(4.38)

and the net torque acting on a ring is

dG

dR
dR (4.39)

=⇒This net torque needs to balance change in specific angular momentum in

disk.
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Accretion Disks 16

Thin Disks: Angular Momentum Transport, III

Balancing net torque and angular momentum loss gives:

Ṁ
d(R2ω)

dR
= − d

dR

(

νΣ2πR3 dω

dR

)

(4.40)

Insert ω(R) = (GM/R3)1/2 and integrate:

νΣR1/2 =
Ṁ

3π
R1/2 + const. (4.41)

const. obtained from no torque boundary condition at inner edge of disk at

R = R∗: dG/dR(R∗) = 0, such that

νΣ =
Ṁ

3π

[

1 −
(

R∗
R

)1/2
]

(4.42)

Therefore the viscous dissipation rate per unit area is

D(R) = νΣ

(

R
dω

dR

)2

=
3GMṀ

4πR3

[

1 −
(

R∗
R

)1/2
]

(4.43)
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Accretion Disks 17

Thin Disks: Temperature Profile, I

The viscous dissipation rate was

D(R) = νΣ

(

R
dω

dR

)2

=
3GMṀ

4πR3

[

1 −
(

R∗
R

)1/2
]

(4.43)

If disk is optically thick: Thermalization of dissipated energy

=⇒ Temperature from Stefan-Boltzmann-Law:

2σSBT
4 = D(R) (4.44)

(disk has two sides!) and therefore

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(

R∗
R

)1/2
]}1/4

(4.45)
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Accretion Disks 18

Thin Disks: Temperature Profile, II

Inserting astrophysically meaningful numbers:

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(

R∗
R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4

(

L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM , R = (1 − (R∗/R)1/2).
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Accretion Disks 19

Thin Disks: Temperature Profile, III

Inserting astrophysically meaningful numbers:

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(

R∗
R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4

(

L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM , R = (1 − (R∗/R)1/2).

Radial dependence of T :

T (R) ∝ R−3/4
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Accretion Disks 20

Thin Disks: Temperature Profile, IV

Inserting astrophysically meaningful numbers:

T (R) =

{

3GMṀ

8πR3σSB

[

1 −
(

R∗
R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4

(

L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM , R = (1 − (R∗/R)1/2).

Radial dependence of T :

T (R) ∝ R−3/4

Dependence on mass (note: for NS/BH inner radius R∗ ∝ M !):

inner disk temperature Tin ∝ (Ṁ/M 2)1/4
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Accretion Disks 21

Thin Disks: Emitted Spectrum, I

ν2

ν
1/3 ν

0

exp(−h   /kT)ν

log ν

lo
g 

F

If disk is optically thick, then locally emitted spectrum is black body.

Total emitted spectrum obtained by integrating over disk

Fν =

∫ Rout

R∗

B(T (R)) 2πRdR (4.46)

Resulting spectrum looks essentially like a stretched black body.
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Accretion Disks 22

Thin Disks: Emitted Spectrum, II

local BB

metals
H+He

Hubeny et al., 2001, Fig. 13

In reality: accretion disk

spectrum depends on

• elemental composition

(“metallicity”)

• viscosity (“α-parameter”)

• ionization state and

luminosity of disk (Ṁ )

• properties of compact object

and many further parameters

Until today: no really

satisfactory disk model

available.
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Accretion Disks 23

Thin Disks: Emitted Spectrum, III

Fe XVII − Fe XXIII

Fe XXV

F
e 

X
X

V
II

Fe
 I 

− 
Fe

 X
V

I

Fe XXVI

Fe
 X

X
IV

Fe species in a disk around a Galactic BH (Davis et al., 2005, Fig. 6)
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Accretion Disks 24

Viscosity

Most important unknown in accretion disk theory: viscosity

even though it dropped out of T (R)!

Earth: viscosity of fluids typically due to molecular interactions (molecular

viscosity).

Kinematic viscosity:

νmol ∼ λmfpcs (4.47)

where the mean free path

λmfp ∼
1

nσ
∼ 6.4 × 104

(

T 2

n

)

cm (4.48)

and the speed of sound

cs ∼ 104T 1/2 cm s−1 (4.49)

such that

νmol ∼ 6.4 × 108 T 5/2n−1 cm2 s−1 (4.50)
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Accretion Disks 25

Viscosity

Viscosity important when Reynolds number small (“laminar flow”), where

Re =
inertial force

viscous force
∼ ρRv

ρν
=

Rv

ν
(4.51)

Follows from Navier-Stokes Equations

Using typical accretion disk parameters:

Remol ∼ 2 × 1014

(

M

M�

)1/2(
R

1010 cm

)1/2
(

n

1015 cm−3

)

(

T

104 K

)−5/2

(4.52)

=⇒ Molecular viscosity is irrelevant for astrophysical disks!

since Re & 103: turbulence =⇒ Shakura & Sunyaev posit turbulent viscosity

νturb ∼ vturb`turb ∼ α cs · H (4.53)

where α . 1 and `turb . H typical size for turbulent eddies.
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Accretion Disks 26

Viscosity

R. Müller

Mechanical analogy of MRI: spring in

differentially rotating medium.

Physics of turbulent viscosity is

unknown, however, α prescription

yields good agreement between

theory and observations.

Possible origin: Magnetorotational

instability (MRI): MHD instability

amplifying B-field inhomogeneities

caused by small initial radial

displacements in accretion disk

=⇒ angular momentum transport
(Balbus & Hawley 1991, going back to Velikhov
1959 and Chandrasekhar (1961).



(Hawley & Krolik, 2002)
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Thin Disks: Comparison with observations 1

Galactic Black Holes

Energy [keV]

10-4

10-3

10-2

10-1

E
 ×

 p
h 

cm
-2

 s
-1

 k
eV

-1

3 5 10 20

Obs28

Obs29

Obs30
Obs31

LMC X-3, (Wilms et al., 2001)

Problem with AGN: peak of

disk in UV

=⇒ Galactic Black Holes: T is

higher

Find ok agreement between

accretion disk models and

theory.

In general: models with just

T ∝ r−3/4 and no additional

(atomic) physics seem to work

best?!?
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Thin Disks: Comparison with observations 2

Galactic Black Holes

(Davis, Done & Blaes, 2006)

Comparison of

self-consistent accretion

disk model with LMC X-3

data =⇒ good agreement,

although values of α

smaller than expected (fits

find 0.01 < α < 0.1

instead of 0.1–0.8).

Top red line: inferred accretion disk
spectrum without interstellar
absorption.
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Wind Accretion 1

Wind Accretion

Early type stars (O, B, mass & 10 M�):

• strong winds, driven by radiation pressure in absorption lines

• mass loss rates 10−10 to 10−6 M� yr−1

• Wind velocity

v(r) ∼ v∞

(

1 − R?

r

)β

(4.54)

with v∞ ∼ 2000 km s−1 and β ∼ 0.5 . . . 1.0

A fraction of the wind can be accreted by a compact object

=⇒ ∼spherical accretion

=⇒ Bondi-Hoyle accretion

(Bondi & Hoyle, 1944)
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The simplest case of wind accretion is spherically symmetric accretion.

For spherically symmetric accretion, we can derive the exact solution for the gas flow from the equations of gas dynamics:

Conservation of mass is described by the continuity equation:
∂ρ

∂t
+ ∇ · (ρv) = 0 (4.55)

while the conservation of momentum is described by the Euler equation

ρ
∂v

∂t
+ ρv · ∇v = −∇P + f (4.56)

where f is a force density (force per unit volume).

By definition, in the spherically symmetric case the flow has only a radial component. Furthermore, if the flow is steady, then all time derivatives vanish. This means that
the equation of continuity now reads

∇ · (pv) =
1

r2

d

dr

(

r2ρv
)

= 0 (4.57)

and therefore
r2ρv = const. = C (4.58)

The constant is related to the mass accretion rate: Since the inward flux of mass is given by ρ|v|, the mass accretion rate is

Ṁ = 4πr2ρ|v| (4.59)

and therefore

C =
Ṁ

4π
(4.60)

To obtain the velocity profile, we use the Euler equation (Eq.4.56). Because of Newton’s law of gravitation

F =
GMm

r2

r

r
(4.61)

the force density has a radial component only and is given by

f = −GMρ

r2
(4.62)

Inserting this into Euler’s equation then results in

ρv
dv

dr
= −dP

dr
− GMρ

r2
(4.63)
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which simplifies to

v
dv

dr
= −GM

r2
− 1

ρ

dP

dr
(4.64)

This differential equation can be solved under the boundary condition of some velocity at infinity. Furthermore, we need to know the equation of state, i.e., how the pressure
relates to other quantities in the system. Here, we will be using the polytropic equation of state

P = Kργ (4.65)

where K is some constant. As shown in lectures on thermodynamics, if the gas is isothermal, then γ = 1, if the flow is adiabatic instead, then γ = 5/3 (γ is the ratio of
specific heats).

With this equation of state, the speed of sound is

c2
s =

∂P

∂ρ
= Kγργ−1 (4.66)

We now insert the equation of state into Eq. (4.64):

v
dv

dr
= −GM

r2
− 1

ρ
γKρ−γ−1dρ

dr
= −GM

r2
− c2

s
1

ρ

dρ

dr
(4.67)

But because of Eq. (4.57)
1

r2

d

dr

(

r2ρv
)

= 0 (4.57)

we have
1

r2

(

dρ

dr

(

r2v
)

+ ρ
d

dr

(

r2v
)

)

= 0 ⇐⇒ 1

ρ

dρ

dr
= − 1

vr2

d

dr

(

r2v
)

(4.68)

Inserting this into Eq. (4.67) gives

v
dv

dr
= −GM

r2
+ c2

s
1

vr2

d

dr

(

r2v
)

= −GM
r2

+ c2
s

(

2

r
+

1

v

dv

dr

)

(4.69)

Multiplying by v then results in

v2 dv

dr
= −GMv

r2
+

2v

r
c2

s + c2
s
dv

dr
(4.70)

and therefore
(

v2 − c2
s

) dv

dr
= v

(

2c2
s

r
− GM

r2

)

(4.71)
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Wind Accretion 2

Bondi-Hoyle Accretion, I

Spherical symmetric accretion:

(

v2 − c2
s

) dv

dr
= v

(

2c2
s

r
− GM

r2

)

(4.71)

For r large: right hand side is positive.

Since dv/dr < 0 for accretion, this means that for large r: v < cs.

Similarly, for small r: v > cs

=⇒ sonic point for v = cs at

rsonic =
GM

2c2
s

(4.72)

=⇒ If the flow goes supersonic, it does so at r = rsonic

Note that cs depends on r, several other solutions are possible, but the above one is the most common one
for the objects we’re looking at. See Holzer & Axford (1970) for details.
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Wind Accretion 3

Bondi-Hoyle Accretion, II

To finish the discussion of Bondi-Hoyle accretion, we now explicitly integrate

Euler’s equation

v
dv

dr
+

GM

r2
+

1

ρ

dP

dr
= 0 (4.64)

over r:
∫

v
dv

dr
dr +

∫

GM

r2
dr +

∫

dP

ρ
= 0 (4.73)

inserting dP = Kγργ−1dρ and integrating then gives the Bernoulli integral

1

2
v2 +

γ

γ − 1
Kργ−1 − GM

r
= const. (4.74)

which obviously is related to energy conservation and can be written as

1

2
v2 +

c2
s

γ − 1
− GM

r
= const. =

cs,∞
γ − 1

(4.75)

where cs,∞ is the speed of sound at r = ∞.

This follows since v(r → ∞) = 0.
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Wind Accretion 4

Bondi-Hoyle Accretion, III

From Eq. (4.75) we can now determine the speed of sound at the sonic point

c2
s(rsonic) = cs,∞

(

2

5 − 3γ

)1/2

(4.76)

and the mass accretion rate is

Ṁ = 4πr2ρ|v| = 4πr2
sonicρ(rsonic)cs(rsonic) (4.77)

Since c2
s ∝ ργ−1,

ρ(rsonic) = ρ∞

(

cs(rsonic)

cs,∞

)2/(γ−1)

(4.78)

Therefore

Ṁ = πG2M 2 ρ∞
c3

s,∞

(

2

5 − 3γ

)(5−3γ)/2(γ−1)

(4.79)
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Wind Accretion 5

Bondi-Hoyle Accretion, IV

Mach number

(M = v(r)/cs(r)) as

a function of radial

distance,

ξ = r/rsonic, for all

possible solutions of

the spherical

accretion problem.

(Holzer & Axford, 1970, Fig. 1)
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Wind Accretion 6

Bondi-Hoyle Accretion, V

Taking γ = 5/3, Eq. (4.79) becomes

Ṁ = πG2M 2 ρ∞
c3

s,∞

= π

(

GM

c2
s,∞

)2

ρ∞cs,∞

= πr2
accρ∞cs,∞

(4.80)

where the accretion radius is defined as

racc =
GM

c2
s,∞

(4.81)

Often, racc is defined as racc = 2GM/cs, see next slide for the reason why.

racc defines the approximate radius of influence of an accreting body.
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Wind Accretion 7

Wind accretion, I

If the ambient medium is not at rest: wind accretion. In principle, we can do a similar calculation

as for Bondi-Hoyle accretion, however, this would take too long, so let’s do an approximate

treatment here.

Let the wind’s velocity be v∞. The material in the wind is captured once

1

2
v2
∞ =

GM

racc
(4.82)

such that the accretion radius for wind accretion is

racc =
2GM

v2
∞

(4.83)

. . . explaining why many people like to have a factor 2 also in the definition of racc for Bondi-Hoyle accretion.

Therefore, analoguously to Eq. (4.80),

Ṁ = πr2
accρ∞v∞ =

4πG2M2ρ∞
v3
∞

(4.84)
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Wind Accretion 8

Wind accretion, II

To estimate the typical parameters of a wind accretor, we need to estimate v∞ for a compact

object at a distance a from the donor star

The typical velocity consists of two contributions:

1. The stellar wind velocity profile

vwind(a) ∼ vwind,∞

(

1 − R?

a

)β

(4.54)

2. The orbital velocity of the compact object

vcompact(a) =

√

GM

a
(4.85)

Therefore

v2
∞ ∼ v2

wind + v2
compact =

GM

a
+ v2

wind,∞

(

1 − R?

a

)2β

∼ GM

a
+ v2

wind,∞ (4.86)

the last is true assuming that the compact object is outside of the wind acceleration zone
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Wind Accretion 9

Wind accretion, III

Finally, making use of the fact that the wind density is

ρ∞ =
ṀW

4πa2vwind,∞
(4.87)

where ṀW is the wind loss rate of the donor.

Therefore, the accretion rate of the compact object is

Ṁ =
G2M 2

a2vwind,∞
(

GM
a + v2

wind,∞
)3/2

ṀW

=







(

GM
av2

wind,∞

)1/2

ṀW for vorbit � vwind,∞
G2M2

a2v4
wind,∞

ṀW for vorbit � vwind,∞

(4.88)

So, for M = 1.44 M�, vwind,∞ = 500 km s−1, a = 107 km, Ṁ = 6 × 10−3ṀW, i.e., the Eddington

rate (ṀEdd = 2.9 × 10−8 M� yr−1 for 1.44 M�) is reached for ṀW = 4.8 × 10−6 M� yr−1, which

is very realistic.



Realistic hydrodynamical

computations are difficult

(asymmetry of accretion

process, ionization of wind,

large range of length-scales

involved,. . . ).
(Blondin 1994, Fig. 4)
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Wind Accretion 11

Accretion in HMXB

Strömgren sphere

tidal stream

photoionization wake

compact
object

Donor Star

accretion wake

Principal components for

wind-accretion:

• Ionized Strömgren

region (wind ionized by

X-rays from compact

object).

• Accretion shock around

compact object (since

vorb > cs).

• Ionization wake where

material is overdense.
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Wind Accretion 12

Accretion in HMXB

Strömgren sphere

tidal stream

photoionization wake

Vela X-1

HD 77581

accretion wake

In realistic HMXB, because

the accreted material still has

some angular momentum, a

small accretion disk still

forms.

J. Blondin: “The disk is being BASHED by the stellar wind, BATTERED

by the tidal stream, and BLASTED by X-rays”
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Wind Accretion 13

Accretion in HMXB
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1997 November 1997 December

RXTE-ASM 2–10 keV lightcurve of the HMXB Vela X-1
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Wind Accretion 14

Accretion in HMXB
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Orbit averaged, energy resolved

lightcurves of Vela X-1



courtesy J. Blondin



courtesy J. Blondin



courtesy J. Blondin



courtesy J. Blondin



courtesy J. Blondin

X-rays from central source heat disk surface, drive a strong wind.
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Accretion onto Magnetized Neutron Stars


