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Starting up ISIS

This exercise presumes that you’ve downloaded and installed the.isisrc files located at:
http://space.mit.edu/home/mnowak/isis vs xspec/download.html

If these files are placed in your home directory, and the path variable in the main.isisrc file is edited to
point to your home directory, then these will automaticallybe loaded when you start ISIS. You also need to
have downloaded the data from the location:

http://space.mit.edu/home/mnowak/data/tgcat.tar.gz
These files need to be placed in whatever directory where you will be running ISIS. They represent Chandra
high energy transmission gratings observations of GRO J1655−40 (Miller et al., 2008, ApJ, 680, 1359),
specifically ObsID 5461. These data files were downloaded from TGCat, theTransmission Gratings Cata-
log, which can be accessed at:

http://tgcat.mit.edu
There you can browse, plot, and download spectral products for all publicly available Chandra gratings
observations.

Loading Gratings Data

There are two sets of Chandra transmission gratings: the High Energy Grating (HEG) and the Medium
Energy Grating (MEG), each of which disperses in two directions away from the aimpoint (the negative
and positive dispersion orders). Furthermore, at any location along the dispersed spectra, one finds multiple
dispersion orders corresponding to wavelengthsλ, λ/2, λ/3, . . .. These orders are separated from one
another using the energy resolution of the CCD. The standardspectral extraction routines typically create
spectra for the first three orders of each set of gratings in each direction. That is, one extracts twelve spectra:
HEG -3,-2,-1, 1, 2, 3, and MEG -3, -2, -1, 1, 2, 3. Rather than create twelve separate spectral files, all
twelve spectra are stored in asingleFITS file, referred to as a “Type 2 PHA” file. For the case of the HETG
spectra, the 12 spectra are stored in the order listed above.The advantage is that there is one file with all the
associated spectra. The disadvantage is that there aren’t standard protocols for storing the information about
the names of the associated arf and rmf files for each spectrum.

Reading such a PHA2 file is not a problem for either ISIS or XSPEC. One just has to make sure to also read
the proper arf and rmf files, and then associate them with the correct spectra. Here we will work with just
the first order spectra (both positive and negative dispersion orders), since they contain the vast majority of
counts, and are also the best calibrated of the spectra.

1. Read the HEG±1 and MEG±1 spectra from the PHA2 file (the third, fourth, ninth, and tenth spectra in
the file) with theload data function. Also read the arf (load arf ) and rmf (load rmf ) files, and then
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associate them with the data using theassign arf andassign rmf functions. (You can get fancy by
writing a simple loop to do the response read and assignment,or you can do it by hand.)

() = load_data("pha2.gz",[3,4,9,10]); % First order spect ra-> Data 1-4

variable order=["heg_-1","heg_1","meg_-1","meg_1"], i ;
_for i (0,3,1)
{

() = load_arf(order[i]+".arf.gz");
() = load_rmf(order[i]+".rmf.gz");
assign_arf(i+1,i+1); % Assigns ARF # -> Data #’s
assign_rmf(i+1,i+1); % Assigns RMF # -> Data #’s

}

2. Plot the data. Since the gratings disperselinearly in wavelength, and the spectra have constant width
wavelength bins, let’s first plot the spectra inÅ. The useful range of the Chandra HETG is≈ 1.5–30Å.
We’ll be doing a lot of plotting, so in this case it might be best to define a structure variable with the plot
options set.

fancy_plot_unit("a");
popt.dsym={0,0,0,0};
popt.dcol={1,4,2,8};
popt.decol={15,5,9,7};
popt.rsym=@popt.dsym;
popt.rcol=@popt.dcol;
popt.recol=@popt.decol;
xlog; ylog;
plot_counts({1,2,3,4},popt;xrange={1,28},yrange={1, 8000});

Combining Data

To combine or not combine data? In principle, if one uses the proper statistical tests, there isn’t any real
advantage to combining data. However, combining data mightallow one to raise the counts/bin sufficiently
to useχ2 statistics, it might serve the purposes of “averaging over”systematic deviations from one observa-
tion to another (or in this case, among the four different dispersed spectra), and it reduces the computational
time. (The model is evaluated once, by default, rather than four times.) Combined data might also be easier
to plot and visualize; however, in ISIS one can combine the data in a plot without having to combine the
data for a fit.

Since combining data is something that you sometime might want to do, for purposes of this exercise, we
will add together all of the gratings spectra. Before we add the spectra, however, we must place them on
the same spectral grid. The HEG data have twice the spectral resolution of the MEG (i.e., over a given
wavelength interval there are two HEG bins for ever one MEG bin); therefore, it’s best if we match the HEG
data to the MEG data. We do this using the ISISmatch dataset grids function. The first dataset in the
list defines the grid which we will match, and all subsequent data sets list will be regridded. (Note that the
MEG -1 and +1 data are already are on the same grid.) This procedure works well for Chandra HETG grids
since there is a factor of two difference between them; however, for other grids you might notice artifacts
due to linear interpolation where the grids haven’t nicely lined up. We then tell ISIS to add the data by using
thecombine datasets command.
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3. Place all the data on a common grid (the MEG grid), combine the data, group it to a minimum signal-to-
noise of 5 and a minimum of two channels per bin (≈ half width half maximum resolution of the MEG, and
full width half maximum for the regridded HEG data).

match_dataset_grids([3,1,2]);
variable combo_id = combine_datasets([1:4]);

group([1:4];min_sn=5,min_chan=2,unit="a",bounds=1.7 );
notice_values([1:4],1.7,28;unit="a");

The response matrices for the HETG arealmostdiagonal, so using “flux corrected” data isa little less
dangerous for this case. (Again, revert back to “detector space” plots to check your data and your fits!)
The plotting routines from the.isisrc scripts will combine any data set indices that are input together
in an array, denoted by [].This will only work if they share a common grid, and will happen regardless of
whether or not they have been combined for fitting purposes.(If they don’t share a common grid, an error
will occur; even if they have been combined for fitting, they will be plotted separately if they are not in an
array together.)

4. Plot the flux corrected spectra, and then zoom in on 12–16Å region. Note the features that you see here.
We’ll be fitting some of these. You can get a good idea of their wavelength location by using thecursor
command. This will give you cross hairs on the plot that allowyou click and obtain coordinate locations.

plot_unfold({[1,2,3,4]},popt;xrange={1.5,28});
xlin;
plot_unfold({[1,2,3,4]},popt;xrange={10,20});
plot_unfold({[1,2,3,4]},popt;xrange={12,16});

cursor;

Fitting an Edge and Lines

You should notice an absorption edge in these data, as well asseveral prominent absorption lines. We’re
going to do alocal fit to describe these features. That is, we are not going to attempt to describe the global
spectrum, rather we are going to try to describe the locationand depth of the edge, as well as the location of
the absorption lines.

5. Restrict the range of the noticed data to 13.5–15Å. Feel free now to switch into keV units (and maybe
flux units for the y-axis). Start with a really simple local continuum model – a powerlaw – fit this, and look
at the ratio residuals.

notice_values([1:4],13.5,15;unit="a");
plot_unfold({[1,2,3,4]},popt;xrange={13.5,15});

fancy_plot_unit("kev","ergs");
plot_unfold({[1,2,3,4]},popt;xrange={NULL,NULL});

fit_fun("powerlaw");
() = renorm_counts;
() = fit_counts;
plot_unfold({[1,2,3,4]},popt;res=6,xrange={NULL,NUL L});
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Note that the qualifier choicesres=4--6 indicate that the residuals for the data sets are to be combined.
(Choosingres=1--3 leaves the residuals uncombined, regardless of whether or not the data is combined.
This allows you to see the individual contributions to the fits.)

The ratio residuals should give you an idea as to the depth of the absorption edge. (The fractional residual
at the edge will be close to the optical depth.) You can use thecursor command to get a good idea of the
location of the edge.

6. Add an edge to the model and fit the data. In general, when attempting to fit high resolution features
in such data, it’s best to restrict the locations and widths of the model components, to prevent them from
wandering off, or becoming broad and fitting continuum features instead.

fit_fun("edge * powerlaw");
set_par(" * Tau",0.2);
set_par(" * edgeE",0.87,0,0.86,0.88);
() = fit_counts;

The presence of narrow features embedded in a broader, noisycontinuum makes fitting these data a good
candidate for thesubplex method, even if it is slower. So long as we don’t have too many bins, and aren’t
attempting to fit many, many lines, it won’t slow us down too much in this case, and it might help us better
find a global minimum.

subplex; % Script alias for set_fit_method("subplex");
() = fit_counts;

If you look at the fit parameters, you’ll notice that the powerlaw slope is pegged against the lower bound.
Let’s set it to the model “hard limit” and freeze it there. (Again, we’re mostly concerned with the narrow
features, not the broader continuum. An exercise for the reader, however, is to determine the systematic
changes in the fitted narrow band parameters with different assumed continuum models.)

set_par(" * Index",-3,1,-3,0);
() = fit_counts;
plot_unfold({[1,2,3,4]},popt;res=5);

7. We’ve improved the fit and have obtained a first estimate of the edge parameters; however, there are
clearly absorption lines present in the data. Use thecursor function to constrain the location of the most
prominent one. Incorporate it into the model by subtractinga gaussian function. Fit the data and plot
your results. Again, constrain thegaussian parameters to help the fit from becoming “lost”, and to keep
thegaussian from becoming broad and fitting continuum features instead.

cursor;
fit_fun("edge * (powerlaw-gaussian)");
set_par("g * LineE",0.848,0,0.845,0.852);
set_par(5,1.e-4,0,0,1);
set_par(7,1.e-3,0,0,1.e-2);

() = eval_counts; % Initial parameters look OK?
plot_unfold({[1,2,3,4]},popt;res=5);

() = fit_counts; % If yes, procede to fitting
plot_unfold({[1,2,3,4]},popt;res=5);
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The fit has improved; however, additional absorption lines remain, including a possible line very close to
the edge. Let’s add three more gaussians to the fits. Use the cursor function to get an idea of their location,
incorporate them into the model, and fit.

cursor;
fit_fun("edge * (powerlaw-gaussian(1)-gaussian(2)-gaussian(3)-gauss ian(4))");
set_par("g * Sigma",5.e-4,0,0,0.002);
set_par("g * norm",8.e-4,0,0,0.01);
set_par("g * (2).LineE",0.838,0,0.835,0.841);
set_par("g * (3).LineE",0.855,0,0.85,0.858);
set_par("g * (4).LineE",0.867,0,0.865,0.87);
() = renorm_counts;
() = fit_counts;
plot_unfold({[1,2,3,4]},popt;res=5);

8. Now run an error bar search on all the parameters, and save the final fit results to a file. For use later in
the exercise, also save the fit statistic information.

lmdif; % Switch back to lmdif as the faster method
(,) = conf_loop(,1,0.01;save,prefix="edge.");
() = system("more edge.save");
save_par("edge.par");

plot_unfold({[1,2,3,4]},popt;res=5,con_mod=0);
plot_unfold({[1,2,3,4]},popt;res=5,oplt=1);

variable info_strt;
() = eval_counts(&info_strt);

Note that in the above we have plotted the model both with and without smearing by the detector response.
The reason for this is that a gaussian line is only anapproximate modelfor real absorption. When subtracting
a gaussian, it’s completely possible for the summed model tobecome negative, which then goes unnoticed
after the model is smeared by the detector response. (The forward folding in ISIS doesn’t care that the model
has gone negative - it’s just a vector of numbers related to a function that ISIS is trying to minimize.)There
have been spectral analyses published in the literature where this has occurred.So, be careful, and double
check your work, and make sure you are in a regime where a gaussian line is an acceptable approximation.
Use a more sophisticated model, such as a Voit profile, if warranted and required by your data!

The expected location of the Neon edge is14.295±0.003 Å. The Neon II 1s→2p line is expected at14.608±
0.002, and the Neon III 1s→2p is expected at14.508 ± 0.002. (Note that for many X-ray lines of ionized
species, Chandra HETG observations have provided better determinations of their positions than either
theoretical calculation or laboratory measurements!) Howclose do your values come to the above? Do
your results argue for the edge and line being intrinsic to the black hole system, or due to absorption by the
interstellar medium?

Monte Carlo Simulations

9. The next most prominent residual occurs at≈ 859 eV. Is this another significant absorption line? We can
add one in, fit the data, and run the error bars. Plot and save your results, and save the fit statistic for use in
the next step.
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cursor;

fit_fun("
edge * (powerlaw-gaussian(1)-gaussian(2)-gaussian(3)-gauss ian(4)-gaussian(5))"
);
set_par("g * (5).LineE",0.859,0,0.857,0.860);
set_par("g * (5).Sigma",1.e-4,0,0,1.e-3);
set_par("g * (5).norm",1.e-4,0,0,1.e-2);

subplex; % Let’s do the initial fit with subplex ...
() = fit_counts;
lmdif; % ... and then the error bars with lmdif
(,) = conf_loop(,1,0.01;save,prefix="edgeII.");
() = system("more edgeII.save");

variable info_strt_II;
() = eval_counts(&info_strt_II);

save_par("edgeII.par");
plot_unfold({[1,2,3,4]},popt;res=5);

The results of the above error bar search suggest that this fifth line is indeed significant – it’s 90% confidence
value lower limit for the line flux is well above zero. But should we believe that? At what point do we start
worrying that we have just fit a random noise fluctuation with anarrow gaussian? (Narrow gaussians will
probably describe well any noise fluctuation that’s only a few bins wide.) Here is where simulations can be
very useful.

The idea is that we take the model parameters from our fit with only four lines, simulate data of the same
exposure as our real data, use the same grouping/noticing criteria, then fit this data with the five line model.
We then store the difference inχ2 values, and repeat many, many times. We then histogram our results, and
see how many times the simulated data (which weknowhas only four lines) yields an improvement inχ2 as
large as the one we found with the real data. (Those who closely followed the statistics lectures will already
note some objections to even this scenario. We discuss some of these further below.)

To obtain the most meaningful results for such simulationswe need to replicate our analysis procedures as
closely as possible(and ideally our analysis procedure should be one that is well-defined and quantitative).
In this case that would mean that we fit, and then run the error bar search to guarantee that we have found
the best fit. That’s going to be very time consuming. As a compromise, we will run the fits withsubplex
(which already will be slow enough). This is a good “first cut”, designed to see if the fifth line has a chance of
remaining significant. Before publishing the results, we would likely increase the fidelity of the simulations.

10. Run a script to evaluate these Monte Carlo simulations. You first have to delete the real data. Then
assign the HETG response matrices to “blank” data sets. Thistells ISIS that these data IDs will be used for
fake datasets. As before, match the dataset grids, load the four line model parameters, then create fake data
with the ISISfakeit command. Group and notice these fake data exactly as we did for the real data, and
fit the four line model. Store theχ2 value. Add another line parameter as before, and fit the data.Store this
χ2 value. Repeat many times. (More than 1000 might be prohibitively long depending upon the speed of
your computer. Those with slower computers might want to start with 300.) Histogram the results. How
many simulations reach or exceed theχ2 value that we found with the real data?
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% Create variable to hold the results:
variable info_I, info_II, ntrial=1000, delta_chi=Double _Type[ntrial];

delete_data(all_data); % Get rid of the real data

_for i (1,4,1)
{

assign_arf(i,i); % Assign the response matrices to
assign_rmf(i,i); % "blank" data sets

}
match_dataset_grids(3,1,2);

subplex; % Go back to the subplex fitting method

Fit_Verbose=-1; % Keep ISIS a little quieter during the fits

_for i (0,ntrial-1,1)
{

load_par("edge.par"); % Base the fake data on these paramet ers
fakeit;

% Group and notice the data as you did above
() = combine_datasets([1:4]);
group([1:4];min_sn=5,min_chan=2,unit="a",bounds=1.7 );
notice_values([1:4],13.5,15;unit="a");
() = fit_counts(&info_I);

% Define the new fit function as above
fit_fun("

edge * (powerlaw-gaussian(1)-gaussian(2)-gaussian(3)-gauss ian(4)-gaussian(5))
");
set_par("g * (5).LineE",0.859,0,0.857,0.860);
set_par("g * (5).Sigma",1.e-4,0,0,1.e-3);
set_par("g * (5).norm",1.e-4,0,0,1.e-2);
() = fit_counts(&info_II);

% Find the chiˆ2 difference
delta_chi[i]=info_I.statistic-info_II.statistic;

}

% Histogram the results with the ISIS histogram function

variable lo,hi;
(lo,hi) = linear_grid(min(delta_chi),max(delta_chi),5 0);
variable ndelta = histogram(delta_chi,lo,hi);
hplot(lo,hi,ndelta);
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Here’s the big, obvious objection to the above. When adding the fifth line, we added it toexactlythe same
region as we did for the real data. However, wechosethat location based upon the fact that it was the
largest remaining residual in the spectrum. If it had beensome otherlocation with that large of a residual,
we would have chosen that instead. Therefore, we really should modify the above script to repeat that
procedure. First, find the largest remaining residual, thenlook for a line in a limited band pass around that
residual. That procedure undoubtedly would increase the number of simulations with as largeχ2 changes.

In fact, one might argue that we should just run through all possible independent wavelength regions, and
try adding a line. We might expect that we have≈ 40 such regions given the energy range we allowed for
the fifth line. Given these considerations, how would you expect our Monte Carlo-derived significances to
change? What changes would you make to the above simulation script? How many trials would you run?
(We leave these as an exercise for the reader!)
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