# Radio Interferometry packages and formats



#### Anita Richards UK ALMA Regional Centre JBCA, University of Manchester











Science & Technology Facilities Council



A M S Richards MW/1\_010 P- 1111000 Loroor 10

# Summary

- Capabilities of C21 radio arrays
  - EVLA, e-MERLIN, ALMA, eVLBI, LOFA
  - plus ATCA, VERA, IRAM, VLBA ...
- What to expect from data reduction packages
  - Services provided
- How to choose a package
- Data formats
  - Measurement Sets and FITS
- Radio Tutorials





#### International radio arrays

Omitting specialised e.g. CMB, solar arrays

WSRT (NL) e-MERLIN (UK) LOFAR (NL/W.Europe) IRAM (F) SMA, CARMA (USA)

VERA (Jap) Space VLBI (Jap/Global)

**GMRT** (India)

ALMA (ESO/N.America /E.Asia/Chile)

EVLA(USA/Mexico)

ATCA, LBA (Aus)

SKA and pathfinders (S.Africa/Aus/Global; project office UK)

Global Very Long Baseline Interferometry

# Radio array imaging capabilities





ALMA

EUROPEAN ARC



### ALMA

- Atacama Large Millimetre Array
  - Europe (ESO), North America, East Asia, Chile
    - Built on Chajnantur Plateau at 5000 metres
  - 54x12-m, 12x7-m antennas
  - 30-950 GHz (10-0.3 mm) in 11 atmospheric windows
  - Full continuum sensitivity ~1 mJy per second
- Baselines 15 m to 14 km
  - 0.005 few arcsec resolution
- From the Sun to the CMB
  - CO or C+ from the Milky Way at z = 3, in <24 hours
  - Kinematics of a  $\rm M_{\odot}$  protoplanetary disk at 150 pc.





#### Flexible reconfiguration

Nick Whyborn 201

# June 2010: five *real* antennas at the high site

The sub-mm conspiracy





# The first galaxies



- CO
  - Multiple transitions at most redshifts
  - Complement EVLA



- Best tracer for EoR studies
- Complement SKA HI





#### **VLBI test GR in Galactic Centre**



A&MA Regional Centre II UK





A M S Richards MWA 2 0 1  $\Phi$  Printed: 28/06/10

# **Chemical complexity in SFR**

- Ceph A East YSO with wind and disc?
  - Continuum contours SMA 875  $\mu m;$  VLA 10 GHz
    - Spatial resolution <1"~750 AU</li>
  - 2 groups of different lines implies different sources
    - Multiple protostars at different evolutionary stages?



# Direct imaging of planet birth



- Pebble growth from micron to cm
  - ALMA, EVLA, e-MERLIN
  - Greaves et al.





AkaMa Regional Centre || UK

A M S Richards MWA 0000 p00 Pr

Printed: 00/00/00

# **Early Science**

EUROPEAN ARC

ALMA Regional Centre II UK

• Band 3 on all; 6, 7 and 9 on most or all

- Bands 4 and 8 on as many as possible





# **Early Science**

- Observations in 2011 (1/3 time)
  - First call end 2010
- 250m baselines, 1 km if pos.
  - (few) 100 mas resolution
- About 16 antennas
  - Single fields, pointed mosaicing
  - Few mJy typical sensitivity
- User software
  - OT (proposing and scheduling)
  - CASA data reduction
- Calibration to state of the art
  - Pipeline-equivalent data products







# **ALMA Regional Centres**

- European support via ALMA Regional Centres
  - Bologna, Bonn, Grenoble, Leiden, Manchester, Onsala, Prague
  - coordinated by ESO www.eso.org/sci/facilities/arc
  - 2 Manchester Reseach Associate jobs! www.alma.ac.uk
- North American and East Asian ARCs
- Development: Advanced pipelines/archives; Band 2..?
- Forthcoming events in Europe
  - Oxford CASA & Molecules in Galaxies 19-20 & 26-9 July
  - Herschel-ALMA Garching Nov 17-19
  - IRAM school Oct 4-8; ALMA Nov-1 Dec
  - Early Science preparation Manchester December 2010





### **Extended Very Large Array**

- Upgrade of USA VLA
  - Optical fibre links, new receivers & correlator etc.
  - 28 antennas, <1 to 36-km baselines
    - 0.05 45 arcsec resolution
  - 1 to 50 GHz continuous frequency coverage
  - Up to 8 GHz simultaneous bandwith
    - Continuum sensitivity <1  $\mu$ Jy/hr in central  $\nu$  range
  - Full polarization
  - Up to ~4 million spectral channels
    - <1 mJy/hr/km s<sup>-1</sup> in central v range
- Radar, pulsar, solar modes
- Completion 2012
  - On time, on spec, on budget!



A M S Richards MWA 2010 p16 Printed: 28/06/10



#### **EVLA frequency roll-out**







#### **EVLA progress**

- 18-50 GHz wideband receivers now available
  - 4-8 GHz end 2010; remaining bands 2012
    - Some old VLA receivers still available until then
- Ultra-flexible WIDAR correlator
  - 8-GHz b/w expected by end 2010
- Comissioning observations:

A M S Richards MWA 2010

- Basic modes, 256 MHz: OSRO program
- Advanced modes, full b/w: RSRO (Socorro-based)
  - http://science.nrao.edu/evla/earlyscience/

| Array    | В       | Α       | D       | С       |
|----------|---------|---------|---------|---------|
| max (km) | 11.1    | 36.4    | 1.03    | 3.4     |
| 2010-12  | Dec-Feb | Mar-Jul | Aug-Nov | Dec-Feb |

Printed: 28/06/10

p18







A M S Richards MWA 2010 p19 Printed: 28/06/10



#### e-MERLIN

- 'electronic'-MERLIN (UK)
  - Linking MERLIN telescopes with optical fibres
    - Up to 2 GHz bandwidth
    - Similar correlator as EVLA up to ~10<sup>5</sup> channels
  - 5x25-m antennas, 1x32-m, 1x75-m Lovell
  - 1.3-1.7, 4-8, 21-26 GHz bands
  - Baselines up to 217 km
    - 0.01 0.2 arcsec resolution
  - Continuum sensitivity few µJy per 12 hr
- 5 GHz: 8-arcmin FoV = >10<sup>8</sup> pixels
- High frequency resolution
  - Multi-channel continuum wide-field observing
  - Integration times 1 sec or less

### e-MERLIN capabilities

- Resolution matches HST/JWST/ALMA
  - Sub-mas ICRF astrometry, in-beam calibration
    Full polarization
- $6 \mu Jy 3-\sigma$  sensitivity in 12 hr at 4-8 GHz (2-GHz bw) - 40-mas resolution, up to 8-arcmin field of view
- ~15  $\mu$  Jy continuum sensitivity at other frequencies
- Spectral line sensitivity 7-20 mJy in 0.1 km/s
- Early science later this year, full operations 2010
  - Open access via UK PATT peer review
  - Joint observations with EVN/ Global VLBI
- http://www.merlin.ac.uk



## e-MERLIN science

High resolution and sensitivity





#### Early science

- SNR 3C391 tutorial
- To come: 100's lines in SFR





### e-MERLIN progress

#### • Gravitational lens 1938+666

- All components have the same spectrum



#### - 6 antennas, LL+RR - 12 hr, 15 MHz



- 4 antennas, LL only
  4 hr, 500 MHz
  - Increased fidelity as well as sensitivity



#### Best evidence for a massive black hole 0.5 ly

- VLBI and monitoring of NGC 4258
  - -Radio continuum jet
  - -22 GHz H<sub>2</sub>O maser proper motions & Doppler velocities: 3D model
  - Warped Keplerian disk
  - $3.8 \ 10^7 \ M_{\odot}$  enclosed
  - Distance 7.2 Mpc
- New candidates identified by GBT
- e-MERLIN+VLBI: sensitivity+resolution
  - -New correlators • 1000s km s<sup>-1</sup>  $\Delta V$







(*Miyoshi*, *Diamond*, *Herrnstein* ...)



A M S Richards MWA 2010 p25 Printed: 28/06/10

# **Very Long Baseline Interferometry**



- Most distant radio QSO
  - J147+3312 *z*=6.12
    - 5000 km/s EVN baselines
    - 7 mas = tens pc resolution
  - Both lobes detected
    - Relativistic proper motions detectable in a decade



# Very Long Baseline Interferometry

- VLBA spans USA from Hawaii to Virgin Islands
- VERA: 43+22 GHz astrometry (Japan)
- EVN links 5->20 telescopes
  - 3-5 sessions per year
  - Can integrate MERLIN and global telescopes
  - Data recorded on disk, correlated at JIVE
    - 1/64-sec integrations for wide-field VLBI
    - Rapid response e.g. to GRB real-time over public internet
- Other arrays incl. once and future space VLBI
  - Current sub-mm tests between APEX, JCMT
- Delay and rate calibration vital
  - Nano-sec accuracy needed to align signals
  - Significant atmospheric differences between stations

## **Resolution:** Space VLBI

- HALCA flew in 1990's (cm-wave)
- ASTRO-G in preparation, led from Japan
  - 9-m antenna, cooled mm receivers, full polarization
  - Baselines up to  $6xR \oplus$  (with full global VLBI)
  - Resolution <50  $\mu$ as, 0.1 pc at highest possible z



credit: Reid et al.







A M S Richards MWA 2010 p28 Printed: 28/06/10

# Sensitivity: Square Km Array

- Origins
  - Cosmology and Galaxy Evolution
  - Probing the Dark Ages the first stars
  - Cradle of life
- Fundamental Forces
  - Strong-field tests of GR
  - Origin and evolution of Cosmic Magnetism
- The Unknown!
- Large collecting area
  - Spectral sensitivity: HI in the early universe
  - Rapidly varying sources: PSR and transients
  - Survey speed
  - 0.07 25 GHz
  - Baselines from filled aperture to VLBI







#### Sparse aperture arrays for the lowest frequencies

#### LOFAR (Netherlands et al)



#### MWA (USA, Australia)







42x6m hydroformed dishes



MeerKAT



36x12m panel dishes

ASKAP

# Effects of sparse uv coverage



- Imaging issues for large gaps between uv tracks
  - Affects snapshots, narrow spectral channels, VLBI
  - Worse artefacts/resolution/missing spacings at low elevation
  - Uniform weighting = interpolation into empty parts of uv plane (can supress sidelobes but lose sensitivity)



EUROPEAN ARC



# **Multi-frequency synthesis**

 Poor visibility plane coverage affects image quality and dynamic range ('missing spacings')
 as well as lower sensitivity and missing large-scales



- Filling in the *uv* plane (left) reduces beam sidelobes



A M S Richards MWA 2010 p33 Printed: 28/06/10



#### M82: from arcmin to mas





A M S Richards MWA 2010 p34 Printed: 28/06/10



#### Wide field, wide band imaging







# Wide-band imaging

- B/W spans 2 GHz at observing freq. 5 GHz
  - Source flux densities change with frequency
    - Different parts of source  $\Rightarrow$  different spectral slopes
- Solve for spectral index/curvature
  - Developing in CASA clean (Rau)



Threefrequency false colour supernova remnant

4546,6183, 6670 GHz





# Wide-band imaging

- B/W spans 2 GHz at observing freq. 5 GHz
  - Source flux densities change with frequency
    - Different parts of source  $\Rightarrow$  different spectral slopes
- Solve for spectral index/curvature
  - Developing in CASA clean (Rau)





#### Data *reduction* challenges

EUROPEAN ARC

ALMA Regional Centre II UK

11 11 0 INIVITATO 111 11 1 4010



1111100. 20/00/10



#### Data *reduction* challenges



• TeraByte data sets

- up to 8 GHz bandwidths, 16 sub-bands
  - can be all in different configurations





4

5

### **Next-generation array demands**

- Wide-field imaging
  - Narrow channels, short integrations
    - GB TB data sets
  - Subtract confusing sources
  - Allow for sky curvature
    - Faceting and w-projection



- Array primary beam from a mixture of antennas
- Non-isoplanatic fields -see LOFAR talk
- Wide-Band imaging
  - Spectral curvature
  - Mixed spectral and continuum configurations
- Huge raw data volumes
  - Pipelines and parallelisation
  - Automate flagging where possible



A M S Richards MWA 2010

Printed: 28/06/10



## Next-generation array demands

- Wide-field imaging
  - Narrow channels, short integrations
    - GB TB data sets
  - Subtract confusing sources
  - Allow for sky curvature
    - Faceting and w-projection
  - Array primary beam from a mixture of antennas
  - Non-isoplanatic fields -see LOFAR talk
- Wide-Band imaging
  - Spectral curvature
  - Mixed spectral and continuum config
- Huge raw data volumes
  - Pipelines and parallelisation
  - Automate flagging where possible



A M S Richards MWA 2010 p41 Print

Printed: 28/06/10





#### The demands of calibration

- Interstellar and atmospheric absorption and phase corruption
- Instrumental noise and delay errors
- Establishing astrometric and photometric scales

Confusion

Twin-lobed radio source Internal and local free-free absorption and Faraday rotation (affects near and far lobes differently).

Absorption/rotation by ISM ionised component; scattering near Galactic centre; HI and (at high freq.) molecular absorption

Atmospheric and ground radiation; interference

> Tropospheric absorption and phase rotation at high freg.



lonospheric distortion and Faraday rotation, especially near Sun/Solar maximum



A M S Richards MWA 2010

# **Unstable atmosphere**

- Low frequencies ionosphere
  - Polarization also affected
- High frequencies -water in troposphere
  - Phase rotated rapidly
  - Absorption affects amp's
  - Rapid switching between phase-ref/target
    - Solve for rate or fit polynomials to phases
  - Measure atmospheric water vapour (WVR)
    - Apply corrections derived from model
  - Refractive phase effects  $\propto \nu$  "delay"
    - Need to correct slopes within a band
    - Rescale corrections to apply across bands

A M S Richards MWA 2010 p43 Printed: 28/06/10





# Calibration using model of sky



Derive calibration using models

- e.g. point-like astrophysical phase-ref source
  - Solve for the differences between model and data
  - Find corrections needed to make data look like model



#### Calibration using model of sky

|                                  | Iter: Baseline 1 : 5                        |                                          |
|----------------------------------|---------------------------------------------|------------------------------------------|
| Phase                            | -ref raw phase (baselines)                  | -                                        |
| fr <sub>111</sub> 11111          | Phase of a model point source               |                                          |
| 1                                | G table: 3C277.1C -cals.fcal / Antenna='3'  |                                          |
| 11.11.11<br>11.11.11<br>11.11.11 |                                             | libration using                          |
|                                  |                                             | nt-like astrophysical                    |
| Arrestan                         |                                             | ef source                                |
|                                  | G table: 3C277.1C_cals.fcal / Antenna='6' / | for the differences<br>en model and data |
| ł                                | make                                        | data look like model                     |



### Calibration using model of sky





A M S Richards MWA 0000

### Inspect and correct data

- Tools to inspect the data, solutions, accuracy

   e.g. compare model with data
- Model subtraction
   Rescale data
- Correct astrometry

   Combine datasets
- Apply calibration and flagging
  - Selectively
  - Reversibly
  - Transfer between targets/datasets
- Keep history/logs





# **Continuum and line imaging**

- Produce images and deconvolve the beam
  - Control of data weighting
    - by inverse of variance in averaging interval
    - by antenna sensitivity
    - for interpolating into missing uv spacings
  - Choice of methods
    - CLEAN selected regions, multi-scale, etc.
    - Wide field and/or multiple facets, mosaicing
    - Wide band continuum and/or spectral line
    - Other methods Maximum Entropy
  - Subtract continuum from line data (*uv* or image)
- Additional data products
  - Spectral index, polarization, spectral moments etc.
- Measurements
  - Noise, component fitting, sophisticated models...



Printed: 00/00/00

# Cleaning

- (a) *uv* coverage
- (b) Dirty beam
- (c) Calibrated visibilities as a function of time
- (d) Dirty beam: *deconvolve from*
- (e) Dirty map to make a set of delta functions which are convolved with a
  (f) Clean beam to give a
  (g) Clean map
  (h) Clean map contours







## Astronomical Image Processing System

- Originated by NRAO for VLA in 1978
  - Fortran, C
  - Limited built-in scripting/math operations
  - Currently most widely used package for cm-wave
    - VLA, MERLIN, most VLBI ... many more interferometers
    - Some support for single dish and any FITS images
  - Very wide functionality from calibration to analysis
- Needed for VLBI/manipulation of visibilities
  - RadioNet ALBiUS CASA-AIPS interoperability
  - Python wrapper (Parseltongue)
  - Wednesday tutorials and optional exercises





|                                   | <b>EXAMPLE 1</b> The Astronomical Image and Table Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FICX                              | ▼                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • Sta<br>– l<br>– l               | SIMPLE =       T /         BITPIX =       -32 /         NAXIS =       4 /         NAXIS1 =       66 /         NAXIS2 =       66 /         NAXIS3 =       280 /         NAXIS4 =       1 /         EXTEND =       T /Tables following main image         BLOCKED =       T /Tape may be blocked         OBJECT = 'SPER '       /         TELESCOP= 'MERLIN2 '       /         INSTRUME= '       /         DATE-OBS= '1999-05-25'       /Obs start date YYYY-MM-DD                                                                                                                                                                                              | eader<br>(CTYPE1 = 'RASIN' /<br>CRVAL1 = 3.48128515485E+01 /<br>CDELT1 = -1.11111123E-05 /<br>CRPIX1 = 3.30000000E+01 /<br>CROTA1 = 0.00000000E+00 /<br>CTYPE2 = 'DECSIN' /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - (<br>• Str<br>- F<br>- (<br>- F | DATE-MAP= '2000-01-11' /Last processing date YYYY-MM-<br>BSCALE = 1.0000000000E+00 /REAL = TAPE * BSCALE + BZERO<br>BZERO = 0.0000000000E+00 /<br>BUNIT = 'JY/BEAM ' /Units of flux<br>EPOCH = 1.95000000E+03 /Epoch of RA DEC<br>VELREF = 257 />256 RADIO, 1 LSR 2 HEL 3 OBS<br>ALTRVAL = 1.66710997656E+09 /Altenate FREQ/VEL ref value<br>ALTRPIX = -1.39000000E+02 /Altenate FREQ/VEL ref pixel<br>OBSRA = 3.48128515485E+01 /Antenna pointing RA<br>OBSDEC = 5.83592651738E+01 /Antenna pointing DEC<br>RESTFREQ= 1.66735906400E+09 /Rest frequency<br>DATAMAX = 5.355936050E+00 /Maximum pixel value<br>DATAMIN = -5.429587513E-02 /Minimum pixel value | CRVAL2       =       5.83592651738E+01 /         CDELT2       =       1.111111123E-05 /         CRPIX2       =       3.400000000E+01 /         CROTA2       =       0.00000000E+00 /         CRVAL3       =       6.28035946778E+03 /         CDELT3       =       -1.756092529E+02 /         CROTA3       =       0.00000000E+00 /         CROTA3       =       0.00000000E+00 /         CROTA3       =       0.00000000E+00 /         CRVAL4       1.0000000000E+00 /         CRPIX4       =       1.000000000E+00 /         CRPIX4       =       1.000000000E+00 /         CRPIX4       =       0.00000000E+00 /         CRPIX4       =       1.0000000000E+00 /         CRPIX4       =       0.000000000E+00 /         CRPIX4       =       0.000000000E+00 /         CROTA4       =       0.000000000E+00 / |

#### - Fortunately there are tools • IMHEAD in AIPS or CASA





A M S Richards MWA 0000 р00 Printed: 00/00/00

| •                                                                                                                                                                 | 🗌 xterm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ □                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| >getn 2<br>AIPS 1:<br>AIPS 1:<br>AIPS 1:<br>AIPS 1:<br>AIPS 1:<br>AIPS 1:                                                                                         | Cimh<br>Got(1) disk= 1 user= 89 type=MA MKN273_MER.ICL001.<br>Image=MKN273A (MA) Filename=MKN273_MER .ICL001.<br>Telescope=MERLIN2 Receiver=<br>Observer= User #= 89<br>Observ. date=14-FEB-2004 Map date=19-AUG-2009<br>Minimum=-4.29469685E-04 Maximum= 7.45257037E-03 JY/BB                                                                                                                                                                                                                                                                     | .1<br>. 1<br>EAM                      |
| Axes<br>Pos<br>Pos<br>Hz<br>1 = I = total<br>intensity                                                                                                            | TypePixelsCoord valueat PixelCoord incrRASIN51213 44 42.142256.00-0.015000DECSIN51255 53 13.150257.000.015000FREQ14.9929902E+091.001.2000000E+07STOKES11.0000000E+001.001.0000000E+00                                                                                                                                                                                                                                                                                                                                                              | Rotat<br>0.00<br>0.00<br>0.00<br>0.00 |
| AIPS 1:<br>AIPS 1: | Coordinate equinox 2000.00<br>Map type=NORMAL Number of iterations= 1000<br>Conv size= 0.13732 X 0.06835 Position angle= -22.69<br>Rest freq 0.000 Vel type: OPTICAL wrt LSR<br>Alt ref. value -4.20762E+05 wrt pixel 8.00<br>Maximum version number of extension files of type CC is<br>Maximum version number of extension files of type HI is<br>Keyword = 'CCFLUX ' value = 4.341595E-02<br>Keyword = 'CCTOTAL ' value = 4.341595E-02<br>Keyword = 'PARANGLE' value = -1.239448E+02<br>Keyword = 'ZENANGLE' value = 6.472005E+00<br>vzoom;tvps | )<br>1<br>1                           |



#### **Polarization** jargon **CIRCULAR** LINEAR Left-hand Stokes Q = LHC, L, LL

**Right-hand** RHC, R, RR Cross hands LR RL make linear

Stokes V = (RR-LL)/2Fractional V/I, |V|/I, % (RL + LR)/2Stokes U = (RL - LR)/2i

**Polarized** intensity  $P = \sqrt{(Q^2 + U^2 + V^2)}$ 

**Polarization angle**  $\chi = \frac{1}{2} \operatorname{atan2}(U/Q)$ Linear feeds X, XX, Y, YY Cross hands XY YX





**Diagrams thanks to Wikipaedia** 

A M S Richards MWA 0000 p53

Printed: 00/00/00

#### **FITS axes labels**

- Axes contain one+ pixels
- Quantization of physical variable e.g.
  - Position in RA
  - Frequency
  - Label
    - Types of polarization ⇒
       I (one 'pixel')
       IOUV (four 'pixels')
    - IQUV (four 'pixels')
  - CASA
- Polarizations also termed correlations

A M S Richards MWA 0000

p00



# **Radio Galaxy 3C31**



- Magnetic field vectors
  - Role in collimating jet
    - Compare magnetic and kinetic energies
  - Low-power jet confined by IGM
    - Polarization affected by host
    - 0.8c 0.2c deceleration by mass entrainment







Printed: 28/06/10

### **CASA** developed to meet NG needs

- aips++ development in c++ started in ~1994
  - Easier to maintain/develop/parallelise
- User-friendly python wrapper since 2007
  - Common  $\mathcal{A}$ stronomy Software  $\mathcal{A}$ pplication
  - 'Task' interface or scripting
  - Underlying aips++ toolkit available
- Measurement Set data format
  - *uv* data and images in subdirectories anywhere
  - ALBiUS (RadioNet) developing interoperability with AIPS
- Still under development check for updates





# AIPS or CASA? (or either or both)

- Either package for straightforward data
- Raw data format:
  - CASA for SDM, MS, UVFITS, soon IDE FITS
    - Might have to pass through array-native package first to apply instrumental calibration (for any other package)
  - AIPS for FITS (but harder for linear feeds)
    - Currently, easier to correct astometry, global flux scale, per-antenna weights etc.
- Calibration
  - CASA especially for EVLA and ALMA
    - Apply Water Vapour Radiometry corrections
    - Fit polynomials to phase
    - Flexible bandpass and polarization calibration
  - AIPS for easy delay and rate calibration
    - ALMA will also need this





# **AIPS** or **CASA**? (or either or both)

- Imaging
  - CASA slower but easier to parallelise
    - Wide-band MFS with spectral index/curvature
    - *w*-projection (3-D sky)
    - Heterogenous primary beams
  - AIPS
    - Faster for multi-facet wide-field images
    - Maximum entropy methods
    - At present, more measurement tools
- Interoperability
  - Script both in Python
  - Easy to swap data but apply calibration/flags first
    - Most extension tables lost
    - Cookbooks recipes a bit too VLA-specific





# Choosing a data package

- What packages can handle your data?
  - Specialised requirements e.g.
    - cm-wave data *observed* in linear polarisation
    - VLBI-like phase-rate solutions needed
- Which of the possible packages does most?
  - Specialised packages may limit you in future
  - How easy is it to script/make pipelines?
- Is expert help available? How is it maintained?
  - Local; help desks; summer schools...
  - What do your collaborators use?
- Are you going to be an expert/developer?
  - Is there a framework for contributing algorithms?



# Keep sight of the physics

- Brain gets filled with package jargon
  - task 'CALIB'; calsour 'phaseref'; solint 0.5; docal 100; aparm(7) 3; gainuse 5; solmo 'p'
- Rember this means
  - Take the visibility data for the phase ref and apply existing calibration table 5; minimum snr 3
  - If no other model is given, a point source at the field centre will be used
  - Compare the data with the model phase and calculate the corrections needed
- That way you will know to expect
  - and what to check if you get







# Choose the right tool for the job

- Innovative projects or observatory staff developer
  - Use toolkit or write your own software
  - Construct pipelines
    - Document for future use



# Choose the right tool for the job

- Innovative projects or observatory staff developer
  - Use toolkit or write your own software
  - Construct pipelines
    - Document for future use
- Experienced radio interferometer user
  - Use pipelined uv cal, guided by proposal metadata
  - Refinine self-calibration/editing
    - Adapt recipe parameters for array, custom products
  - Prefer to use a familiar package
    - Interoperability essential



# Choose the right tool for the job

- Innovative projects or observatory staff developer
  - Use toolkit or write your own software
  - Construct pipelines
    - Document for future use
- Experienced radio interferometer user
  - Use pipelined uv cal, guided by proposal metadata
  - Refinine self-calibration/editing
    - Adapt recipe parameters for array, custom products
  - Prefer to use a familiar package
    - Interoperability essential
- Beginner or just in a hurry
  - Jargon-free pipeline interface
    - Steer within instrumental constraints
  - Clear explanation of pitfalls/artefacts



# Keep a full processing history

- Use scripts, or
- Note parameter values
  - -Examples for further processing
  - Troubleshooting postmortem







#### You know you're a geek when...

task 'KETTLE'; source 'tap; docoffee 2; sugarprm 1 0; domilk off; nmugs 2;go

A M S Richards MWA 2010 p65





# Which pipeline/package?

- Parseltongue
  - AIPS functionality
    - Plus extensions using Python maths, your programs etc.
  - Parellelisable
  - Uses OBIT which may need extra libraries
- CASA scripting
  - Integral part of package design
  - Include any Python or your programs
  - Includes (sub-)mm and other NG capabilities
  - Some tasks e.g. for VLBI not yet available
- MEQTrees
  - Powerful for LOFAR and other very wide-field data
  - Complex to install and steer
- ALBiUS interoperability should help in future!

