Low-frequency radio astronomy and wide-field imaging

James Miller-Jones (NRAO Charlottesville/Curtin University)

ITN 215212: Black Hole Universe Many slides taken from NRAO Synthesis Imaging Workshop (Tracy Clark talk) (http://www.aoc.nrao.edu/events/synthesis/2010/)

Atacama Large Millimeter/submillimeter

Array

Expanded Very Large Array

Robert C. Byrd Green Bank Telescope

Very Long Baseline Array

Low-frequency radio astronomy

- Wavelength range 10 MHz 1 GHz
- HF, VHF, UHF bands
- Long wavelengths, low frequencies, low photon energies
- Ionosphere places a cut-off at 10 MHz
- Frequencies where radio
 astronomy began
 - Jansky's work at 20.5 MHz
 - Reber's work at 160 MHz

160 MHz sky image from Reber, resolution ~12 degrees

Fundamental limitations

- Resolution of an interferometer $\theta = \frac{\lambda}{h}$ ٠
- Field of view $\theta = \frac{\lambda}{D}$ Sensitivity $\sigma_s = \frac{2k_B T_{sys}}{A_{eff} \sqrt{N(N-1)t_{int}\Delta v}}$
- Low-frequency radio astronomy is inherently ٠
 - low-resolution
 - wide field-of-view
 - low fractional bandwidth

with respect to similar centimetre-wavelength observations

Fundamental limitations: Confusion

- Low resolution coupled with high sensitivity = confusion ٠
 - Unresolved sources place a fundamental limit on the theoretical noise limit

4

Other low-frequency problems

- Ionosphere affects signal propagation
 - Refraction, source "wander", decorrelation
- RFI swamps astronomical signals
- Wide field of view
 - Field of view exceeds size of isoplanatic patch
 - Direction-dependent self-calibration
 - Bandwidth smearing requires small channel widths
 - Time smearing requires rapid correlator dumps
 - Imaging must use multiple facets to cover field of view
 - Imaging large fields of view requires enormous computing power

The ionosphere

- Radio waves experience variable refractive index
- Extra path length adds extra phase
- Interferometers sensitive to phase changes
- Changes
 Time and direction dependent phase error per antenna
- Cannot be removed ⁻¹⁵⁰ by standard self-cal

The ionosphere

 Ionosphere affects signal propagation

$$\phi_{ion} = \frac{e^2}{4\pi\varepsilon_0 m\nu} \int n_e dl$$

- Wedge:
 - Faraday rotation, absorption, refraction
- Waves:
 - Differential refraction, source distortion, scintillation

Credit: Dharam Vir Lal

Compensating for the ionosphere (I)

Field-based calibration

NRAC

- Rapid images of bright sources to compare to known positions
- Fit Zernike polynomial phase delay screen for each time interval.
- Apply time variable phase delay screen to produce corrected image

Compensating for the ionosphere (II)

- Source Peeling and Atmospheric Modelling (SPAM; H. Intema)
 - Iteratively self-calibrate on and subtract bright sources from uv-data
 - Fit global ionospheric model to peeling solutions
 - Calculate model phase solutions for each facet of wide-field image
 - Apply solutions, image and deconvolve as usual
 - 10-50% reduction in background noise
 - Peak fluxes and astrometric accuracy increased

Bandwidth smearing

- Recall field of view given by λ/D
- But bandwidth smearing affects point source response
- At low frequencies:
 - Field of view is large
 - Fractional bandwidth is high
- Solution
 - Split the bandwidth into many spectral channels
 - Each channel is not affected by bandwidth smearing
 - Fourier transform each spectral channel separately
 - Recall (u, v, w) are components of **b** measured in λ
 - Grid each channel separately

 $\frac{\Delta \nu}{2} \approx \frac{\Delta \theta}{2}$

Radio Frequency Interference

- The other benefit of narrow channels: RFI excision
 - Most man-made RFI is narrow-band
 - MUCH brighter than most astronomical data
 - We need to edit out visibilities affected by interference

- Sensitivity
$$\sigma_s = \frac{2k_B T_{sys}}{A_{eff} \sqrt{N(N-1)t_{int}\Delta v}}$$

- Remove few affected channels rather than entire integration
- RFI can also be natural (lightning, solar effects...)

Radio Frequency Interference

- Worst on short baselines
- Tends to be narrow-band
- Care about internal generation
- Automated algorithms
 - Thresholding
 - Median window filters
 - Deviation in complex plane
 - High Stokes V
 - Pattern recognition
 - *u=0* (fringe rate is zero on *v* axis)

Non-coplanar arrays

• Recall the relation between visibility and sky brightness

$$V_{\nu} = \int I_{\nu}(\mathbf{s}) \exp\left(-2\pi i \frac{\mathbf{b.s}}{\lambda}\right) d\Omega$$

$$V_{v}(u,v,w) = \iint \frac{I_{v}(l,m)}{\sqrt{1-l^{2}-m^{2}}} \exp\left[-2\pi i (ul+vm+wn)\right] dldm$$

- Not a Fourier transform relation unless:
 - 1) All baselines lie in a plane (E-W interferometers, snapshots)
 - 2) Emission from a small region of sky (narrow-field imaging)
- At low frequencies, FOV = λ/D , i.e. large
 - We can only recover FT relation for snapshots or E-W interferometers

Non-coplanar arrays: facetting

$$V_{v}(u,v,w) = \iint \frac{I_{v}(l,m)}{\sqrt{1-l^{2}-m^{2}}} \exp\left[-2\pi i \left(ul+vm+w\left\{\sqrt{1-l^{2}-m^{2}}-1\right\}\right)\right] dldm$$

- We can't perform an FT unless $2\pi w (\sqrt{1-l^2-m^2-1}) < 1$
- Facetted approach:
 - Split full FOV into many small facets
 - For each facet, w term < 1</p>
 - Image/deconvolve each facet separately
 - Separate PSFs for each facet
 - Reconcile different facets in a "major cycle"
 - Stitch facets together at the end

Non-coplanar arrays: w-projection

- Correlation of electric field at A and B is 2-D FT of sky brightness
- We sample at B' not B
- Propagating from B to B', the electric field diffracts
- Use reciprocity theorem and consider transmission
- If BB' is small, use Fresnel diffraction theory

Non-coplanar arrays: w-projection

- Project visibility at a point (*u*, *v*, *w*) to the plane (*u*, *v*, *w*=0)
- *w*-term disappears, we recover 2D FT relation

$$V_{v}(u,v,w) = \iint \frac{I_{v}(l,m)}{\sqrt{1-l^{2}-m^{2}}} G(l,m,w) e^{-2\pi i (ul+vm)} dldm$$

$$G(l,m,w) = e^{-2\pi i w \left(\sqrt{1-l^{2}-m^{2}}-1\right)}$$

$$V(u,v,w) = \widetilde{G}(u,v,w) * V(u,v,w=0)$$
Tangent P

Convolution relation between
 V(u,v,w) and V(u,v,w=0)

NRAC

 No longer probe a single spatial frequency with a single (u, v) sample

Credit: Tim Cornwell

(U.V.W)

Low frequencies = bright sources!

- Typical synchrotron spectral indices: $\alpha \sim -0.7$
- Brighter at lower frequencies
- Deconvolution even beyond the primary beam
- Many clean iterations
- Sensitivity to extended structure (short uv-spacings)
- Multi-scale clean

- Cygnus A
 - 5 kJy at 330 MHz
 - 17 kJy at 74 MHz
 - Dynamic range issues

Low-frequency science: why bother?

- Key science drivers at low frequencies
 - Dark Ages (spin decoupling)
 - Epoch of Reionization (highly redshifted 21 cm lines)
 - Early Structure Formation (high z RG)
 - Large Scale Structure evolution (diffuse emission)
 - Evolution of Dark Matter & Dark Energy (Clusters)
 - Wide Field (up to all-sky) mapping
 - Large Surveys
 - Transient Searches (including extrasolar planets)
 - Galaxy Evolution (distant starburst galaxies)
 - Interstellar Medium (CR, HII regions, SNR, pulsars)
 - Solar Burst Studies
 - Ionospheric Studies
 - Ultra High Energy Cosmic Ray Airshowers
 - Serendipity (exploration of the unknown)

NRAO

2nd School on Multiwavelength Astronomy, Amsterdam, June 2010

Epoch of Reionization

2nd School on Multiwavelength Astronomy, Amsterdam, June 2010

Structure Formation

NRAO

Galaxy clusters form through mergers and are identified by large regions of diffuse synchrotron emission (halos and relics)

Important for study of plasma microphysics, dark matter and dark energy

2nd School on Multiwavelength Astronomy, Amsterdam , June 2010

Galactic Supernova Remnant Census

Census: expect over 1000 SNR and know of ~230

NRAO

2nd School on Multiwavelength Astronomy, Amsterdam , June 2010

Transients: Galactic Center

> Filaments trace magnetic field lines and particle distribution > Transients: sensitive, wide fields at low frequencies provide powerful opportunity to search for new transient sources Candidate coherent emission transient discovered near Galactic center

2nd School on Multiwavelength Astronomy, Amsterdam, June 2010

Simplicity and complexity

• Average collecting area of a lossless antenna

- Dipoles
- Complexity is in computing power
 - Electronic "software telescopes"

$$\left\langle A_{e}\right\rangle = rac{\lambda^{2}}{4\pi}$$

2nd School on Multiwavelength Astronomy, Amsterdam , June 2010 26

Low frequency summary

- Challenging but rewarding region of the EM spectrum
- Technical, algorithmic and computational challenges
- Advances in computing power have opened up the era of lowfrequency
 - LOFAR, MWA, LWA, PAPER
- Fundamental science
 - EOR
 - Rapid all-sky surveys
 - Transient science and the unknown
 - Cosmic magnetism
 - Solar physics
 - UHECRs

