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Examples of Fourier power spectra: 
periodic signal 

Sinusoidal signal with Poisson noise 

Time domain 

Frequency domain 



Quasi-periodic oscillation (QPO) 
and red noise  

Random wave trains  

QPO 
Red noise 



Various possible QPO signals 





  Sco X-1 

SAX J1808.4-3658 SAX J1808.4-3658 

Sco X-1 



So we get these interesting 
power spectra . … 

•  What do the structures in the power 
spectra mean ? 

•  What is significant, what is not ? 
•  How to quantify what you can see ? 





Fourier analysis 

data noisy – statistical technique  
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FOURIER TRANSFORM

Fourier transform of signal = decomposition of signal into sine waves.

At ω, best-fit sinusoid is: a cos(ωt− φ) = A cos ωt + B sinωt
(a =

√
A2 + B2 and tanφ = −B/A)

Do this at many frequencies ωj , then

x(t) =
1
N

∑

j

aj cos(ωjt− φj) =
1
N

∑

j

(Aj cos ωjt + Bj sinωjt)

Fourier: Aj =
∑

k xk cos ωjtk ; Bj =
∑

k xk sinωjtk

So: correlate data with sine and cosine wave.
Good correlation: large A, B — bad correlation: small A,



COMPLEX REPRESENTATION

A way of handling the two numbers (A, B or a, φ) you get at each ω.

aj =
∑

k

xkeiωjtk

xk =
1
N

∑

j

aje
−iωjtk

The Fourier amplitudes aj are complex numbers:
aj = |aj |eiφj = |aj |(cos φj + i sin φj)

If the signal xk is real then imaginary terms at +j and −j cancel out in
∑

j

,

to produce strictly real terms 2|aj | cos(ωjtk − φj), j = 1, . . . , N
2 − 1.

Re 

Im 

aj 



DISCRETE FOURIER TRANSFORM OF REAL TIME SERIES

Time series: xk, k = 0, . . . , N − 1

Transform: aj , j = −N

2
+ 1, . . . ,

N

2

aj =
N−1∑

k=0

xke2πijk/N j = −N

2
+ 1, . . . ,

N

2

xk =
1
N

N/2∑

j=−N/2+1

aje
−2πijk/N k = 0, . . . , N − 1

Time step δt =
T

N
; Frequency step δν =

1
T

xk refers to time tk =
kT

N
; aj refers to frequency ωj = 2πνj =

2πj

T

So, for eiωjtk we have written e2πijk/N

0 N-1 

T 



DISCRETE FOURIER TRANSFORM OF REAL TIME SERIES -
cont’d

• Fourier theorem: transform gives complete description of signal
• Highest frequency you need for this is the Nyquist frequency

νNy = νN/2 =
N

2T
= half the sampling frequency

1
δt

=
N

T
, as

”up-down” is the fastest observable frequency.

aN/2 =
∑

k xkeiπk =
∑

k xk(−1)k for real xk is always real

• Lowest frequency (>0) = frequency of first frequency step =
1
T

=
= frequency of sinusoid that fits exactly once on T

• At zero frequency you get a0 =
∑

k xk, also always real for real xk.
(Called the DC component)

• At all frequencies in between you get complex Fourier amplitudes aj , so:
• N , the number of input values xk ≡ number of output values; count them:

a0; (|aj |, φj) pairs for j = 1, . . . , N/2− 1; aN/2.
• Orthogonal, if the xk are uncorrelated then the aj are uncorrelated.



CONTINUOUS FOURIER TRANSFORM

Decomposes a function into an infinite number of sinusoidal waves.

Signal x(t) −∞ < t <∞

Transform a(ν) −∞ < ν <∞

a(ν) =
∫ ∞

−∞
x(t)e2πνit dt −∞ < ν <∞

x(t) =
∫ ∞

−∞
a(ν)e−2πνit dν −∞ < t <∞

What is the relation of this ’ideal case’ with the discrete Fourier transform
when we define xk = x(tk), tk = kT/N ?

x(t) 

0 N-1 

xk 

T 



CONVOLUTION THEOREM

If a(ν) is the Fourier transform of x(t) and
b(ν) is the Fourier transform of y(t) then:

the transform of the product x(t) · y(t) is the convolution of a(ν) and b(ν):

a(ν) ! b(ν) ≡
∫ ∞

−∞
a(ν′)b(ν − ν′)dν′

”the transform of the product is the convolution of the transforms” (and vv).
[Convolution denoted by !]

= 





a(ν) B(ν) =
sin(πνT/N)

πνT/N

T/N 



ν−2



Fourier transform of a sinusoid 





Fourier transform of a sinusoid 



POWER SPECTRUM – LEAHY NORMALIZATION

Parseval’s theorem:
∑

k

x2
k =

1
N

∑

j

|aj |2

Variance in the real time series xk:

Var(xk) ≡
∑

k

(xk − x)2 =
∑

k

x2
k −

1
N

(
∑

k

xk

)2

=
1
N

∑

j

|aj |2 − 1
N

a2
0

=
1
N

∑

j !=0

|aj |2

Leahy normalized power spectrum (choice of normalization to be addressed):

Pj ≡
2

Nph
|aj |2 ; j = 0, . . . ,

N

2
; where Nph =

∑
k xk = a0

Then: Var(xk) =
Nph

N




N/2−1∑

j=1

Pj +
1
2
PN/2



: variance is sum of powers.

As aj has the same dimension as xk, the dimension of Pj ∝ |aj |2/a0 is also the
same as xk: [Pj ] = [aj ] = [xk].



POWER DENSITY SPECTRUM

Power density gives power per unit of frequency (i.e., per Hz),
so that integral over power density spectrum is sum of powers:

∫ νj2

νj1

p(ν)dν =
j2∑

j=j1

Pj

Now δν = 1/T , so the Leahy normalized power density at νj is:
p(νj) ≡ Pj/δν = TPj . Dimension: [p(ν)] = [xk/ν]

Pj 



FRACTIONAL RMS AMPLITUDE

Fractional rms amplitude of a signal in a time series:

r ≡

√
1
N V ar(xk)

x
=

N

Nph

√√√√√Nph

N2




N/2−1∑

j=1

Pj +
1
2
PN/2



 =

√√√√√ 1
Nph




N/2−1∑

j=1

Pj +
1
2
PN/2





r is dimensionless and often expressed in %.

”Rms normalized” power density: q(νj) ≡ TPj/Nph = pj/Nph

q(ν) has the nice property that fractional rms is just r =
√∫

q(ν)dν.
Dimension of q(ν) is [q] = [1/ν] = [t]; physical unit of q(ν) is (rms/mean)2/Hz.



”SOURCE” FRACTIONAL RMS AMPLITUDE

If the xk are the sum of source and background: xk = bk + sk, then the rms
amplitude as a fraction of just the sk:

rs = r· B + S

S
, where B and S are sums of the bk and sk, so B+S =

∑
xk = Nph

”Source rms normalized” power density: qs ≡ q·
(

B + S

S

)2

= TPj ·B + S

S2

Now rs =
√∫

qs(ν)dν ; qs has the same unit as q: (rms/mean)2/Hz.





Upper limits 
and sensitivity 

when 
Ptot = Pnoise + Psignal 



The number of trials 



NOISE POWER DISTRIBUTION

Noise powers follow a chi-squared distribution with 2 degrees of freedom (dof).

This can be seen as follows:
Pj ∝ A2

j + B2
j , where Aj =

∑
k xk cos ωjtk, and Bj =

∑
k xk sinωjtk,

k = 0, . . . , N − 1

So, each Aj and each Bj is a linear combination of the xk. Hence if the xk are
normally distributed then the Aj and Bj are as well → Pj is ∝ χ2 with 2 dof
by definition.

If the xk follow some other distribution (e.g. Poisson) then the central limit
theorem ensures that Aj and Bj are still approximately normal (for large N)
→ the Pj are still approximately χ2 with 2 dof.

Exact expressions depend on the normalization of the Pj .



LEAHY POWER DISTRIBUTION

The Leahy normalization is chosen such that if the xk are Poisson distributed,
then the Pj exactly follow the chi-squared distribution with 2 dof, χ2

2.
This is actually an exponential distribution:

prob(Pj > P ) = Q(P |2) = e−P/2

Properties of this distribution:
mean 〈Pj〉 = 2 ; standard deviation σPj = 2; Pj uncorrelated

So, the power spectrum is very noisy. This does not improve with:
• longer observation — you just get more powers
• broader time bins — you just get a lower νNy

Solution: smooth the power spectrum.



Smoothing methods 



Example: average of thousands of power spectra of GX 5-1 





Average of M power spectra Average of M power spectra 



Plot log-log 



Subtract Poisson (counting) noise 



Logarithmic rebin 

Pν



Multiply power with Fourier frequency 

νPν



AVERAGED POWER DISTRIBUTION

Individual Pj follow χ2
2, the chi-squared distribution with 2 dof.

What is the distribution of the average of M powers 1
M

∑
M Pj ≡ PM ?

Additive property of χ2 distribution: sum of M powers is distributed as χ2
2M .

So PM is distributed as χ2
2M/M , and hence the probability for PM to exceed

some threshold P is:

prob(PM > P ) = Q(MP |2M)

Properties of this distribution: average = 2; standard deviation = 2/
√

M , as:

〈
∑

M Pj〉 = 2M =⇒ 〈PM 〉 = 2 and σ2
P

Pj
= 4M =⇒ σPM

=
2
√

M

M
=

2√
M

Central limit theorem: for large M the distribution of PM tends to normal
(Gaussian), with mean 2 and standard deviation 2/

√
M .





Detection level 



99% conf. 
90% conf. 

M = 





Re 

Im 

aj,noise 

aj,tot 

aj,signal 

SUPERPOSITION

Superposition theorem: Transform of the sum is sum of the transforms.

Suppose you have two signals xk and yk added together in one time series,
then if

aj =
∑

k

xkeiωjtk/N and bj =
∑

k

ykeiωjtk/N ⇒ aj + bj =
∑

k

(xk + yk)eiωjtk/N

So this is not in general true for the power spectrum!
It depends on relative phase how the two signals combine:
|aj + bj |2 = |aj |2 + |bj |2 + cross-terms =⇒
Ptot = Pa + Pb + cross-terms
For uncorrelated noise and large M : linear regime:
cross terms average out to zero: Ptot = Pa + Pb

• Groth 1975 (ApJSupp 29, 285)
• Vaughan et al. 1994 (ApJ 435, 362)
discuss the distribution of Ptot given
stochastic Pa and deterministic Pb.

If xk and yk are both uncorrelated noise: central limit theorem:
Ptot follows χ2 distribution scaled to local mean power.
For large M , the PM follow normal distribution with standard deviation PM/

√
M



Mean power 
M = 6166 

Power standard 
deviation 

Ratio times √M 

Cumulative distribution  
of individual powers 
     (line = expected χ2) 

Cumulative distribution 
  of indiv. powers after  
       scaling to local  
           mean power  

Powers are chi squared distributed around local mean power 



Detection against ‘non-Poisson noise 
powers’ 

•  When searching for a signal, always check what is the 
distribution of the ‘background noise powers’  

•  Use χ2 distribution scaled to local mean power to set 
detection level and evaluate significances 



Signal to noise (Gaussian limit) — ”single-trial significance”

So the sum of M Leahy-normalized powers of a Poisson-noise time series for
large M is Gaussian with mean= 2M and σ = 2

√
M , and P = Pnoise + Psignal.

• Photon counting time series of length T and count rate Ix = Nph/T
• Signal with fractional rms amplitude r, producing broad feature of width ∆ν

Feature will contain M = T∆ν individual powers

Using r =
√∑

Pj/Nph =⇒
∑

Pj = Nphr2, we find for the signal-to-noise:

nσ =
Nphr2

2
√

M
=

1
2

TIxr2

√
T∆ν

=
1
2
Ixr2

(
T

∆ν

)1/2

In terms of source fractional rms rs =
B + S

S
r, using Ix = B + S:

nσ =
1
2
Ixr2

s

(
S

B + S

)2 (
T

∆ν

)1/2

=
1
2
r2
s

(
T

∆ν

)1/2 S2

B + S



A practical procedure 
•  Segment data 
•  Fourier transform the segments 
•  Calculate power 
•  Average to get to linear, Gaussian regime 
•  Rms normalize to rs 
•  Set errors to local mean power  / √M 
•  Analyze using standard chi-squared fitting techniques (Levenberg-Marquard) using 

multi-component models (e.g. Lorentzians) 
•  Characterize components by their rms and characteristic frequencies 
      … 
•  Method works fine for all broad features (= stochastic variability) 
•  Can easily be generalized to cross-spectral analysis 
•  Instrumental deadtime effects need to be carefully accounted for  
•  If M can’t be large enough to reach Gaussian regime: Leahy normalize  powers X2 

distributed  maximum likelyhood method (Brandon) 
•  Missing or unequally spaced data, plus small M (AGN case)  Monte Carlo 

simulations (Iossif) 



Lorentzian : P(ν) = r2Δ
π

1
Δ2 + (ν − ν0 )2

Centroid frequency: ν0   ;  Power : r2 = P(ν)dν     
v=−∞

∞

∫
Half − width :Δ     ;        Coherence :Q ≡ ν0 / 2Δ

Characteristic frequency :νmax = ν0
2 + Δ2

The power spectrum of an exponential x(t) = e− t /τ  is a Lorentzian: 

P(ν) ∝ 1
Δ2 + ν 2 .  So the power spectrum of an exponentially damped sinusoid 

x(t) = e− t /τ × cos(2πν0t)  is the convolution   P(ν) ∝ 1
Δ2 + ν 2 ⊗δ (ν − ν0 ).  

But: there are many other ways in which Lorentzians can be produced!

Lorentzians 

Q=50 

Q=0.1 



νPν Pν
NS BH 



END 


