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Timing Explorer

1046 X-rays/second 103 X-rays/second

Poisson process (cf. Brandon)g
photon counting noise
dominates!




Orbital time scale in strong
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Examples of Fourier power spectra:

periodic signal

Sinusoidal signal with Poisson noise wre-

-y

Time domain

INtENT

s T -] - o= L -1 [ F_ pmtt @ - L  J wa s . | S s

I M M PERCROL, e T

-------

2 Frequency domain




Quasi-periodic oscillation (QPO)

and red noise

4{Random wave trains| e
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Various possible QPO signals

Signal not directly observable
In time domain.

Hence various possible time
domain signals can underly
the QPO peak we see Iin
frequency domain
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Black hole
candidate
(XTE J1550)

Leahy Power

Leahy Power
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Neutron stars sl Sco X-1 ﬁu

Deadtime-
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S0 we get these interesting
power spectra. ... W

Frequenc

* What do the structures in the power
spectra mean ?

» \What is significant, what is not ?
* How to quantify what you can see ?




“One person’s noise is another one’s
data”

‘Noise’ (= random aka as “stochastic” variability) in the light
curve produces broad components in the power spectrum.
Examples:

« Counting statistics noise (Poisson noise) = white noise
* Poisson noise modified by instrumental effects (e.g. deadtime)

and other instrumental noise
* Noise that is (stochastic) intrinsic source variability:
QPO, band limited noise, red noise, etc.

All these can occur at the same time, possibly together with
deterministic signals.

* They can be the background against which you are trying to
detect something else.
 Or they can be the signal you are trying to detect.
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FOURIER TRANSFORM

Fourier transform of signal = decomposition of signal into sine waves.
o
X @

At w, best-fit sinusoid is: acos(wt — ¢) = Acoswt + B sin wt
(a = VA% + B? and tan ¢ = —B/A)

Do this at many frequencies w;, then

1 1
z(t) = N Z a; cos(w;t — @) = N Z (Aj cosw;t 4+ Bj sinwt)
J

J

Fourier: A; =), xpcosw;ty ; Bj =), psinw;ty

So: correlate data with sine and cosine wave.
Good correlation: large A, B — bad correlation: small A,



COMPLEX REPRESENTATION

A way of handling the two numbers (A, B or a, ¢) you get at each w.
Im

1wt
a; = g xpe itk
k

1 Z —tw;t :
— . k
T = N 2 aj;e J
J

Re

The Fourier amplitudes a; are complex numbers:
aj = |a;le'® = |a;|(cos ¢; + isin ¢;)

If the signal x; is real then imaginary terms at +; and —j cancel out in Z :

j
to produce strictly real terms 2|a;| cos(w;tr — ¢;)



DISCRETE FOURIER TRANSFORM OF REAL TIME SERIES
T

Time series: oy, k=0,....N =1 [ || [[LLLLLLLEELLLL]]
0 N-1
Transform: a;, j=—-——+1,..., =
2 2
N—1
y N N
a; = xk€27mjk/N j= _5 4+ 17 75
k=0
N
Th = 5 Z aje_%ijk/N k=0,...,N—1
j=—N/2+1
Time step 6t = — ;| F tep 6 =
ime ste — — ;| Frequency step dv = —
p N q Yy p T
: kT 2]
T, refers to time ty = N W refers to frequency w; = 27v; = —=
So, for e™wiltk we have written e2™Wk/N



DISCRETE FOURIER TRANSFORM OF REAL TIME SERIES -
cont’d

e Fourier theorem: transform gives complete description of signal
e Highest frequency you need for this is the Nyquist frequency

N 1 N
UNy = UNj2 = 9T = half the sampling frequency 5= T as

LJTJ1T1J1] 7up-down” is the fastest observable frequency.
anj2 = Y5 ke ™ =3, xp(—1)* for real xy is always real

e Lowest frequency (>0) = frequency of first frequency step = T =

= frequency of sinusoid that fits exactly once on T’

o At zero frequency you get agp = ), Tk, also always real for real zy.
(Called the DC component)

e At all frequencies in between you get complex Fourier amplitudes a;, so:

e N, the number of input values x;, = number of output values; count them:
ao; (laj|,¢;) pairs for j =1,...,N/2 —1; anys.

e Orthogonal, if the zj, are uncorrelated then the a; are uncorrelated.



CONTINUOUS FOURIER TRANSFORM

Decomposes a function into an infinite number of sinusoidal waves.
Signal r(t) —oo<t< o

Transform a(v) —oco<rv < oo

a(v) = / z(t)e* ™" dt —00 <V < X

x(t) = / a(v)e ™" du —00 < 1 < o0

— 00

What is the relation of this ’ideal case’ with the discrete Fourier transtorm
when we define v = x(ty), tx =kT/N 7 ‘

LA




CONVOLUTION THEOREM

If a(v) is the Fourier transform of z(¢) and
b(v) is the Fourier transform of y(¢) then:

the transform of the product x(¢) - y(¢) is the convolution of a(v) and b(v):

oo

a(v) ® b(v) = / a(V)b(v —v)dv

— OO

”the transform of the product is the convolution of the transforms” (and vv).
[Convolution denoted by ®]
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So: the discrete Fourier amplitudes are values at the Fourier frequencies of the
windowed and aliased continuous Fourier transform.

Windowing: due to finite duration of the data convolve with window transform.
Aliasing: due to discrete sampling of data reflect around Nyquist frequency.




Is aliasing a problem?

Not so much as one might fear, as in practice, we do not
really discretely sample the data, but rather bin the data up!

That means that before discrete sampling we convolve the
X(t) with the bin width (we take a ‘running average’).

) T/N
So, in the frequency domain, we multiply a(v) with B(v) = SZ”(W;/KT )
TV




Is windowing a problem?

Yes, for steep spectra the “leakage” can be severe.

» Steep ‘red noise’ becomes less steep, limit V_2
 Delta functions become spread out

A sinc function [sin(x)/]




Fourier transform of a sinusoid
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LOG(POWER) LOG(POWER)
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Fourier transform of a sinusoid

. 2 2 2
/N wx /N
12 — 1 422 (Sm“‘”) ( mz/
Ia’]l 4 T sinmx /N + sin [7(27 + z)/N] *

+2 (SIZZC@[N) (sin [W(Z/fx) /N]) cos (N = 1) (2n(5 + 2)/N) + 2‘“]

t = (Vsine — V;)T

L 2
SINTxY -
zi—AzN2< ) :c/N<<1and0<<j/N<<%




POWER SPECTRUM - LEAHY NORMALIZATION
: 1
Parseval’s theorem: Z T7 = N Z a;|?

k

Variance in the real time series xj:

G- -
— —Z|a3|2

J#0
Leahy normalized power spectrum (choice of normalization to be addressed):
2 N
Pi=——la;|*; 7=0,...,—; where N, =), ) = ag
Nph 2
N N/2-1 |
Then: Var(xy) = Tph Z P; + §PN/2 : variance is sum of powers.

j=1
As a; has the same dimension as zy, the dimension of P; o |a;|*/ao is also the
same as r: |[P;| = |a;] = [zk].



POWER DENSITY SPECTRUM

Power density gives power per unit of frequency (i.e., per Hz),
so that integral over power density spectrum is sum of powers:

Vij2 .]2
/ p(v)dv = Z P;

i1 j=j1
Now dv = 1/T, so the Leahy normalized power density at v; is:
p(v;) = P;/0v = TP;. Dimension: |p(v)| = |z /V]

\ﬂ(”)
anm A
Sv=1/T

P




FRACTIONAL RMS AMPLITUDE

Fractional rms amplitude of a signal in a time series:

_ \/%V‘”“(x’f) _ N N N§51P+
r= — _Nph\ N2 P i 9 N/2

r is dimensionless and often expressed in %.

”Rms normalized” power density: q(v;) = T P;/Nyn = pj/Npn

q(v) has the nice property that fractional rms is just

Dimension of ¢(v) is [q] = [1/v] = [t]; physical unit of ¢(v) is (rms/mean)?/Hz.

r=4/[qv)dv.




?SOURCE” FRACTIONAL RMS AMPLITUDE

If the x; are the sum of source and background: xp = br + sk, then the rms
amplitude as a fraction of just the sj:

B+ S
S

re =1 , where B and S are sums of the b, and s, so B+S = ) xx = Ny,

B+S\° B+5S
S ) A

Now ry = \/f qs(v)dv ; gs has the same unit as ¢: (rms/mean)?/Hz.

”Source rms normalized” power density: ¢, = ¢- (




Detecting ‘'something’ in a power spectrum

(= to reject the null hypothesis ‘just noise’)
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How big must a power be to constitute a significant excess over the noise?

The (1-€) confidence detection level P, is a level that has a false alarm
probability of €. If there is just noise, prob(P > Py) = €.

Take € small, e.g., €=1% for 99% confidence.

If P> Pyet then with 99% confidence there is something else than just noise:

a source signal.

For the problem at hand of detection, i.e., to determine P, all you need to
know is the noise power distribution.

Later we shall see that to quantify the strength of the signal, i.e., to
determine confidence regions (error bars, upper limits) , you also need to
know the interaction between noise and S|gnal powers; that is more complex.
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Upper limits

and sensitivity § ;;;— ““I
when ]
Pl 2 Plisiss 7 Pt | :
JhJ billal an’l’lﬁesd;oﬂuﬁ‘\um_[m

Ptect 1S level unlikely (prob €) to be exceeded by noise in all trials together

P cceq IS level likely (prob 1-0) to be exceeded by noise in one trial

P..ax IS largest observed power.

* If we have a P;> P, @ signal was detected at (1-€) confidence:
all P/'s together had a small probability € to exceed this level

* If not, the (1-0) confidence upper limit on Py .. is Py = Po— Peceed:
if such a power would have been present at one given j, then it would
with large probability (1-0) have exceeded P, .,, but this did not happen
* The (1_6)7 (1'8) SenSitiVity IS I:)sensitive = I:)detect B I:)exceed:
If a signal power as large as P, OCCUrs at one given j, then it will
with large probability (1-0) exceed P .., and be detected at (1-¢) confidence



The number of trials

| | |

2000 3000
FREQUENCY (Hz)

So, the (1-€) confidence detection level P is a level that has a small
false alarm probability of €.

The probability to exceed P by noise should be ¢ for all powers in
the frequency range of interest together !

If you consider Ny, values P;, then the probability per trial should be
much smaller than €, namely about €/N

trial-

So P, depends on — desired confidence level 1-¢
— number of trials N, , which could be large
— noise power distribution




NOISE POWER DISTRIBUTION

Noise powers follow a chi-squared distribution with 2 degrees of freedom (dof).

This can be seen as follows:
P; x A? -+ BJQ-, where A; = ), xj cosw;ty, and B; = ), xj sinw;ty,
k=0,...,.N—1

So, each A; and each Bj; is a linear combination of the z;. Hence if the z; are
normally distributed then the A; and B, are as well — P; is o< x* with 2 dof
by definition.

If the x; follow some other distribution (e.g. Poisson) then the central limit
theorem ensures that A; and B, are still approximately normal (for large V)

— the P; are still approximately x? with 2 dof.

Exact expressions depend on the normalization of the P;.



LEAHY POWER DISTRIBUTION

The Leahy normalization is chosen such that if the x; are Poisson distributed,
then the P; exactly follow the chi-squared distribution with 2 dof, x3.
This is actually an exponential distribution:

prob(P; > P) = Q(P|2) = e~ F/2

Properties of this distribution:
mean (P;) = 2 ; standard deviation op, = 2; P; uncorrelated

Q(P2)

2 P
So, the power spectrum is very noisy. This does not improve with:
e longer observation — you just get more powers
e broader time bins — you just get a lower vy,
Solution: smooth the power spectrum.



Smoothing methods

2000 3000
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* Average several power spectra of subsegments of the time series
* Average adjacent bins in a power spectrum




Example: average of thousands of power spectra of GX 5-1
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Average of M power spectra
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> PGPLOT Window 1 Ni=] E3

Plot log-log
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> PGPLOT Window 1 Ni=] E3

Subtract Poisson (counting) noise
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> PGPLOT Window 1 Ni=] E3

Logarithmic rebin
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X PGPLOT Window 1 Ni=] E3

Multiply power with Fourier frequency
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AVERAGED POWER DISTRIBUTION
Individual P; follow x2?, the chi-squared distribution with 2 dof.

What is the distribution of the average of M powers ﬁ Yoy b = Py ?

Additive property of x? distribution: sum of M powers is distributed as x3,;-

So P, is distributed as X% A /M, and hence the probability for Py to exceed
some threshold P is:

prob(Py; > P) = Q(MP|2M)

Properties of this distribution: average = 2; standard deviation = 2/v/ M, as:

D 2v M 2
<ZMP]>:2M:><PM>:23ndO';P :4M%>UPM: —

i M v M

Central limit theorem: for large M the distribution of P,; tends to normal
(Gaussian), with mean 2 and standard deviation 2/v/ M.
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Detection level

2000 3000
FREQUENCY (Hz)

The (1-¢) confidence detection level P is a level that has a
small false alarm probability of €.

If you consider Ny, values P;, then the probability per trial
should be about €/N;;;.

P,.: depends on — desired confidence level 1-¢
— number of trials N,
— noise power distribution, i.e., on M, the
number of powers averaged

=>» detection level is given by | € / N, = Q(MP4|2M)




LOG(DETECTION LEVEL-2)

"""" 99% conf.
— 90% conf.
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LOG(NUMBER OF TRIALS)




Quantifying signal power

2000 3000
FREQUENCY (Hz)

To detect signal power and to quote the confidence of the
detection, you just need to know the noise power distribution
[done].

To quantify the signal power (error bars, upper limits) you also
need to know what is the interaction between noise and signal
powers.

If you see a total power P, ., then how much of that is P

S|gnal




SUPERPOSITION
Superposition theorem: Transform of the sum is sum of the transforms.

Suppose you have two signals z; and y, added together in one time series,
then if

aj — Zxkeintk/N and bj — Zykeintk/N = a/j + bj — Z(xk _i_yk)eiwjtk/N
k k k

So this is not in general true for the power spectrum!
It depends on relative phase how the two signals combine: Im
la; + b;|? = |a;|? + |b;|* + cross-terms =
Pt = P, + P, + cross-terms

For uncorrelated noise and large M: linear regime: a,

cross terms average out to zero: P, = P, + B, ’ S

e Groth 1975 (ApJSupp 29, 285) Q) noise
e Vaughan et al. 1994 (ApJ 435, 362) 9 signal

discuss the distribution of P;,; given

stochastic P, and deterministic P.

If ;. and y, are both uncorrelated noise: central limit theorem:
P, follows x? disjibution scaled to local mean power. -
For large M, the Py, follow normal distribution with standard deviation Py, /v M

Re



Powers are chi squared distributed around Iocal mean power

M j Cumulative distribution?

Me_ag1pé)gver ' o of individual powers !
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Detection against ‘non-Poisson noise
powers’
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|

E.
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O
A,
N
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Q

« When searching for a signal, always check what is the
distribution of the ‘background noise powers’

« Use x? distribution scaled to local mean power to set
detection level and evaluate significances




Signal to noise (Gaussian limit) — ”single-trial significance”

So the sum of M Leahy-normalized powers of a Poisson-noise time series for
large M is Gaussian with mean= 2M and o = 2V M, and P = Pyoise + Prignal-

e Photon counting time series of length 7" and count rate I, = N, /T
e Signal with fractional rms amplitude r, producing broad feature of width Av
Feature will contain M = T'Av individual powers

Using r = /> P;/Npyn, = > P; = Nppr?, we find for the signal-to-noise:

’]’LO_ pr— = — = — xf[" _—
2V M 2VTAy 2 Av
B+ S

In terms of source fractional rms r, = Tr, using I, = B+ S:

1 S N’/ T\ 1.,/ T\ s
Ng = —Ixrg — = —7“? —
2 B+ S Av 2 Av B+ S




A practical procedure

Segment data

Fourier transform the segments

Calculate power

Average to get to linear, Gaussian regime
Rms normalize to r,

Set errors to local mean power / VM

Analyze using standard chi-squared fitting techniques (Levenberg-Marquard) using
multi-component models (e.g. Lorentzians)

Characterize components by their rms and characteristic frequencies

Method works fine for all broad features (= stochastic variability)
Can easily be generalized to cross-spectral analysis
Instrumental deadtime effects need to be carefully accounted for

If M can’t be large enough to reach Gaussian regime: Leahy normalize - powers X2
distributed - maximum likelyhood method (Brandon)

Missing or unequally spaced data, plus small M (AGN case) = Monte Carlo
simulations (lossif)




Lorentzians e
[
o\ .
, A T
: r A 1
Lorentzian : P(v) = ; > o 0 e T
T A° + (V - VO) 1(c))éo—cn O'.'?IO' ,_(,),.,,1,100, ,_,1_'300, “1'(-)';0(
Centroid frequency: v, ; Power :r’ = J P(v)dv 100 |
y=—co ——
. 5 1077
Half —width: A Coherence :Q =v, /2A 3 .
o . _ > > 10”4}
Characteristic frequency :v__ =4/V; + A |

L n n L aal n aal 1 n
0.001 0.010 0.100 1.000 10.0¢

1 —t/T & . ‘requency Z
The power spectrum of an exponential x(z) = e " is a Lorentzian: Freauency (2)

1
P(V) o< i So the power spectrum of an exponentially damped sinusoid

v2

1
x(t)=e™"" X cos(2mv,t) is the convolution P(V) o< T ®Oo(V—V,).
+

But: there are many other ways in which Lorentzians can be produced!
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