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Introduction to Statistics and
Probability




Probability quantifies randomness
and uncertainty

Statistics uses probability to make
scientific inferences based on data




Examples of Statistical Problems in

Astrophysics

How do | estimate the normalization and
logarithmic slope of a X-ray continuum,

assuming a power-law form? How certain am | of
these values?

What constraints can | place on the FWHM of an
emission line?

Is there evidence for a source buried within a
background signal? What is the maximum flux of
this source that is allowed by my data?

Is there evidence for a spectral line in my
spectrum? How confident am | that one exists?



The Data Collection Process

Astrophysical Process Detector Collects Photons, Adds Noise
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Outline

This lecture focuses on classical results
Introduction to probability
Using Data to Estimate Quantities

The likelihood function and maximum-
likelihood estimators

Statistical Hypothesis Testing



Introduction to Probability: Some

Definitions

Probability:
Bayesians: Probability quantifies the degree of
belief that an event will occur

Frequentists: Probability is the relative frequency
of an event occurring, in the limit of infinite trials

Probabilities of random variables must be
positive and sum to one over all possible
events



Discrete Distribution Functions

The probability that the random variable X
takes the value y:
P(X =y)

The probability that X takes a value from the
set iy, Y Yab: ;

P(X €{,,,,¥5}) = 2P<X =y,

(Probability that X =y, orX =y, orX = y.)



Continuous Distribution Functions

Also called ‘probability density function’

The probability that the random variable x
takes a value between x and x + dx:

p(x)dx

The probability that x is between x1 and x2

Pr(x, <x <x,) = fp(x)dx

1



Marginal, Joint, and Conditional

Probability Distributions

Joint, p(x,y): Probability of ——— p(xy) —
x andy p(ylx=1.5)

Marginal, p(x): Probability
of x: 6L\ P(Y)

p(x) = [ pley)dy 7
Conditional, p(x|y): 2'_
Probability of x at fixed y |

p(x1y)p(y) = p(x,y) -4 =




Expected Value

The expected (expectation) value of a random
variable x is the mean of x

For Discrete random variables:  g(x) = Eyp(x =)
y

For Continuous random variables  E(x) = [ xp(x)dx
Expected value has the following properties:
E(ax)=aE(x), E(x+y)=Ex)+E(y)
E(f(x) = [ f(x)p(x)dx



Variance

Variance is defined as
Var(x) = E[(x = E(x))’] = E(x") =[E(xX)]’

Measures the width of the probability
distribution, amount of variability in the
random variable x

Standard deviation is the square root of the
variance



Covariance and Correlation

Covariance and correlation are
defined as
Cov(x,y) = E[(x - E(x))(y = E(y))] = E(xy) - E(x)E(y)
Cov(x,y)
Var(x)Var(y)

Corr(x,y) =

Measures degree in which x and y More Covariance
‘know’ about each other —

Variance and covariance typically
expressed as a matrix:

5 _ Var(x) Cov(x,y)
- Cov(x,y) Var(y)

Less Covariance



Correlation and Independence

Correlation and statistical independence are not the same
thing!
Correlation is a linear measure of independence

All statistically independent random variables are
uncorrelated

However, not all uncorrelated random variables are
independent

All of these distributions are uncorrelated,
but clearly not independent



The Binomial Distribution

Gives the probability of k ‘successes’ in n trials,
where the probability of success is p:

k_n kl n-=k
p()—kp(—p)

Example: How many obscured AGN will be
detected in a survey of N AGN when the fraction of
obscured AGN is p?



The Poisson Distribution

Probability of k events occurring over a
time interval when the rate is A:

)Lke—)u
k!

Example: Number of photons detected in
an observation from a source with count
rate A




Gaussian Distribution

One of the most important probability
distributions, has mean p and variance o2:

- 7
p(x) _ (2]1:(),2)—1/2 eXp< (');OZM) |

Limit of binomial and Poisson distribution
as become very large



x> Distribution

A x?distribution of k degrees of freedom is the
distribution of a sum of k squared standard
normal random deviates:

k 2
(Zi_ )
Zlv--°»Zk~N(Ma02)a X2=E qu
i=1

pOC) =12 Tk /DTy e

Used in quantifying uncertainty in best-fit
parameters, and in comparing simpler and
more complicated models




The Central Limit Theorem

The CLT: The sum of alarge | o |
number of independentand | |

iIdentically distribution

random variables will be _
asymptotically Gaussian ;é %

Reason for wide-spread use —

of the Gaussian distribution

Convergence is slow in the % | é

tails, so be careful!




Summary of Probability

Types of distributions:

Joint, p(x,y) = “Probability of x and y”

Marginal, p(x) = “"Probability of x, regardless of y”

Conditional, p(x]y) = “Probability of x given a value of y”
Expectation value E(x) is the mean of x

Covariance, Cov(x,y), measures the degree of
correlation between x and y, but is not the same as
independence

The Central Limit Theorem: "The sum of a large
number of random values independently drawn from
the same probability distribution will converge to a
Gaussian distribution”



Statistical Estimators

Suppose we want to estimate a quantity, say
the width of a spectral line: how do we do
this? Possible estimators are

The width that minimizes the absolute value of
the errors between the spectral model and data

ne width that minimizes the squared errors
ne sample average of a set of similar objects

ne number g



Estimators and Loss Functions

Estimators are usually chosen to minimize a
‘loss function’ (or ‘goodness of fit statistic’)

Loss functions quantify how well a model fits
a data set, thus giving meaning to "best-fit’

The most common loss function in
astronomy is the 2 statistic:

n = Number of data points

2
\ Y, — ml(H) y.=The value of the it" data point
)(2 = E m.(0) = The value of the i'"" model data point,
O.
i=1

|
with parameters 6
o, = The standard deviation of the
measurement erroriny;,

l



Example: Estimating the flux of a

spectral line

Suppose we want to estimate the flux of an
emission line with known location and profile
The measurement errors are assumed to be
Gaussian with zero mean and constant
standard deviation, o

Estimate the emission line flux, F, by
minimizing the x>

y;=The observed flux density at the it"

2
N Y, — Fm()»l) wavelength, A,
Xz = E : m(A) = The Gaussian line profile, normalized to
: O
i=l1

integrate to one




The Solution is found to be:

F'=

;y,-m(k,-)

E;m(kj)z

Flux Density [Arbitrary]

10]
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A [Angstrom]



Assessing the Quality of an

Estimator

Will the estimator equal the true value on
average, i.e., is it unbiased?

Bias = E( estimated 0 ) — (True value of B)

What is the variance of the estimator? Is it
highly variable, or very similar when
calculated from different random samples?

Both the variance and bias contribute to the
error in the estimated value(s) of the
parameter(s)



Line Flux Example, Continued

E;yim()"i)
>, m)
2., EOIm) 3 Fm2)"
E;lm()»j)z E’;lm()\«j)z
EZIVClr(yl.)m()Li)Z . 5?2

lzllm(%)zr 2 m)’

F'=

HE F| Unbiased!

Var(F"') =




Going Further: Confidence Intervals

Now that we have an estimate of a quantity, how do
we quantify our uncertainty in its true value?

Denote the estimated value of the parameter as 8'. An
a confidence interval is defined to be the interval 6, <
0’ < 0, such that the true value of 0 fall within that
interval a% of the time

Note that 8,, 8’, and 8, are all functions of the data

For a Gaussian sampling distribution of 6’, the 68%,
95.5%, and 99.7% confidence intervals correspond to
+10, 20, and 30



More on the Line Flux Example

Because the data are Gaussian, the
sampling distribution is also Gaussian

S EGom) 3 Fmh)
Ej&lm()bj)z E’;=1m(kj)2
E:_1=1Var(yi)m()hi)2 ) 5

S o] S
E.g., @ 95.5% confidence interval can be
constructed as F' + 2(Var(F"))*/2

E(F') =

Var(F'") =




Summary of Statistical Estimators

Estimates of quantities are obtained by
minimizing a loss function

Loss functions quantify how poorly a
parameteric model fits the data

The most common loss function in astrophysics
is the x2 statistic

Unbiased estimators on average equal the true
value

An a% confidence interval contains the true
value a% of the time



The likelihood function and

statistical modeling

The likelihood function is defined as the
probability of observing the data, given the
model parameters, p(y|0).

The likelihood function is a statistical model for
the sampling distribution of the data

It has two components:

m(0) = A deterministic model for the astrophysical
process or object, parameterized by 6

p(y|©) = A probability distribution describing how the
data are randomly generated from m(0)



Connection to x?

In most cases, the data are sampled independently (e.g,,
independent measurement errors):

Py, 10) = | [ P 10)
i=1

In addition, if the measurement errors are Gaussian, have
zero mean, and standard deviations o, ...., 0., then

n 0 n
p(ys....y, 10) = H[Znﬁf]l/zexp{ ~(; = W;(Q)) } _ e—xz/zl_[[zngiz]—l/z
=1 i=1

20

l

So, for Gaussian data

¥ =-2Inp(y |0) + Const




Why use the maximum-likelihood

estimator?

Estimate parameters by maximizing the likelihood:
sounds reasonable, but can we justify this?

In general, the MLE is:
Asymptotically unbiased

Asymptotically normal with mean equal to the true value, and
variance equal to the inverse of the second derivative log-
likelihood multiplied by -1:
-1
HMLE)

Asymptotically, the MLE has the smallest variance among all
unbiased estimators

d2
EO,,;)——=True 0, Var(0,,.)—— ‘—( 10 Inp(y 10)




Implications for 2

For Gaussian data, the MLE and the estimate
that minimizes x2 are the same! Therefore,
the estimate that minimizes x? also enjoys all
the properties of the MLE for Gaussian data

In particular:

d2X2
E0 .)——=—>True 0, Var(0 .)———2 Py

\ 9.2




But be careful...

The previously mentioned properties of the MLE
are only valid if certain conditions are met

Most importantly:

The true value of the parameter can not lie on the
boundary of the parameter space, and

The number of parameters can not increase
indefinitely with the sample size

Even if these conditions are met, the MLE may

be slow to converge to the asymptotic
distribution



Confidence intervals for the MLE

Approximate confidence
intervals for the MLE may
be constructed based on
the asymptotic normality:

O_,MLE ~ 2(0’)2){2/0’)02)_1/2

For one parameter this is
easy: +10, 20, and 30
correspond to the 68%,
95.5%, and 99.7%
confidence interval

Sampling Distribution

68% CI

95.5% CI ]

99.7% CF

0.1} :
0.0Jl L \4

0,,.—0

True



MLE Cls for Multiple Parameters

For multiple parameters, of T
we can search for regions 4 AxQ3%)
of constant Ax2 (Avni 1976, p
Gaussian data only!)

AY2(99%) |

Q

4l AY(68%)

Parameter 2
=

The value of Ax?depends
on the number of
parameters and the

desired size of the CI L] P '
6 -4 -2 0 2 4 6

If not using Gaussian data, Parameter |
need to search for contour

of log-likelihood




Summary of Maximume-Likelihood

The likelihood function is the sampling distribution of
the data, assuming a parameteric model

When the sampling distribution is Gaussian,
minimizing x2is the same as maximizing the likelihood

The sampling distribution of the MLE is
asymptotically Gaussian with mean equal to the true
value, and variance related to the 2"d derivative of the
log-likelihood

Approximate confidence intervals for the MLE can be
constructed for Gaussian data by varying x2about its
minimum



Hypothesis Testing

How do we assess whether a given model is a
good fit, i.e., is a model consistent with the
observed data?

How do we decide if there is significant
evidence in favor of a more complicated
model, such as an additional componentin a
spectrum?



The Null Hypothesis

Formulate a ‘null hypothesis’, and then test if
the data are consistent with it (i.e., try to
falsify it):
Quantify the null hypothesis using some function
of the data (a test statistic, e.qg., x?)

Find the distribution of the test statistic assuming
the null hypothesis

Compare the observed value of the test statistic
with its distribution



Assessing the quality of the fit

After we fit a model with p parameters, how

do we assess whether it provides a good fit to
the data?
Usually done by analyzing the residuals

U
e

nder the usual assumptions (measurement
rrors are Gaussian, independent, have zero

mean, and known standard deviation), then
the x2 statistic will follow a chi-square

d

istribution with n—p degrees of freedom



Bad Fit, Inconsistent Good Fit, Consistent
with Data with Data
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But ¥21s not the whole story

X2 is just one test for
consistency

Should also

examine residuals
for patterns

| I DR
W N = O = N W

4 I T
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Testing if additional parameters are

needed

How do we assess whether a more
complicated model provides a better fit?

Often done by calculating the ratio of the
likelihood values at the MLE (the likelihood
ratio test)

LRT =2[Inp(y 10)-Inp(y16,)]



The F-test

For Gaussian data, the LRT takes the form of
the F-test

Denote the number of parameter in models 1
and 2 as p, and p,. Then, calculate:

F =

(X12 — X;)/(pz — pl))
X; /(n - pz)

The statistic F will follow an F-distribution
with (p,-p,,n-p,) degrees of freedom



Null hypothesis for more general

LRT

Null hypothesis: The simpler model is the
correct model

The more complicated model has Ap more
parameters than the simpler (null) one

Under the null hypothesis, the likelihood ratio
will approximately follow a chi-square
distribution with Ap degrees of freedom

Only strictly true asymptotically, in general one
should simulate



Example: Power-law spectrum vs.

Power-law with a spectral line

POWER LAW + NARROW IRON
POWER LAW SPECTRAL LINE AT 6.4 keV
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Comparing the models

Model with Iron line has 1 Lo T
more free parameter, the |
line flux g 0.8

O
Compare difference in x2 £ 06 Observed Value -
with the theoretical E
distribution % 0.4}
Observed difference is f;i
13.9, highly significant ~ 02
Data strongly favor 0.0L.3 Y

0O 5 10 15 20

including aniron line Ay Ap = |



Some Caveats, though...

The LRT statistic only follows a chi-squared
distribution if

The asymptotic limit has been reached

The models are nested, i.e., the simpler model is a special
case of the more complicated one

The simpler model does not lie on the boundary of the
parameter Space
The second two conditions also apply to the F-test

If these conditions are not met, need to do a Monte

Carlo estimate of the sampling distribution under
the simpler model



Summary on Hypothesis Testing

Start with assuming a simpler (*null’) model,
which one tries to rule out

Choose a statistic which depends on the data,
and find the sampling distribution under the null
hypothesis

When assessing whether a model is consistent
with the data, the 2 statistic is usually
distributed as a chi-square distribution

When comparing two nested models, the
difference in x2is also distributed as a chi-square
distribution under certain restrictive conditions



