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Statistics lI: More Advanced
Issues




Outline

Previous lecture focused on classical results
Now we focus on more advanced techniques:
Data analysis with low numbers of counts
Introduction to Monte Carlo Methods
Feature Detection and Upper or Lower Limits

Bayesian Methods

Many of these techniques are the subject of
ongoing research



Review of MLE for Gaussian Data

Recall that for Gaussian Data:
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For X-ray data, if the data are binned (grouped) with
at least ~10 counts / bin, then assuming the
Gaussian limit is usually good enough




Low Counts

What if we don’t have enough counts to bin the
data, e.qg., 25 photons?

Instead, we just have a list of photon arrival times
and energies

Need to work directly %
with the Poisson likelihood! 2z |
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Review of the Poisson Distribution

Gives the probability of detecting k photons
when the average is A:

k —A
Ae

p(k) = T

In the limit of large A, the Poisson distribution
converges to a Gaussian distribution with
mean and variance equal to A




Using the Poisson Distribution for

MLE

We model the count rate in an energy bin as A(E,9),

where O parameterizes our model (e.g., A(E,0) could
be a power-law)

If the ith energy bin has k counts, the likelihood is
p(k,10) = (k) A(E,,0)" e *F

So, the likelihood function of the data is:
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Example: Power-law Spectrum

Assume a power-law spectrum:
ME kD) =k E;
Plug this into the likelihood function:

plkys...k, 10) = | [ (k)" BT exp(-kyE;T)
i=1

Estimate k, and I' by maximizing the log-
likelihood



Estimating Uncertainties for low

counts

Can use the asymptotic results for MLE:
The MLE is Gaussian with mean and variance:
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But, we are in the low count regime, so be
careful with using results applicable for large
sample sizes

More accurate results obtained using monte
carlo or Bayesian methods



Power-law Example
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Approximate!!



The Monte Carlo Method

In general, analytical formula for probability
distributions can’t be derived

But, we have computers, so we do the next
best thing: simulate!

This is a very versatile technique known as
monte carlo, and is not limited to statistics



Example: Estimating a distribution

Consider a toy statistical model for variability
of an accretion disk:

N ~ Poisson(A)
logE,,...,lJog E, ~ Gaussian(u,0”)
N E..: is the total energy released
ETot = EEi by the flares in a given time
ie1 interval

Use simulation to estimate the distribution of

ETot



Can use MC to estimate the

expected value of a model

Sometimes we can’t derive the expected value
of our data based on our statistical model, so no
analytical expression for 2

Can use MC simulations to estimate the average
(expected) value of the data for our model

Good example of this: estimating power spectra
of X-ray lightcurves of accreting black holes
(Uttley, McHardy, & Papadakis 2002, see later
lectures on timing analysis)



Monte Carlo Estimate of Errors

Use MC to simulate the data generation/
collection/analysis process:
Assume the best fit value of your model parameters

Simulate an observed data set based on your best fit
parameters

Fit the simulated data using the same method you
used to get your best fit value

Repeat

Result is an estimate of the sampling
distribution of your parameters



Power-law Example Revisited

Fit power-law to ~25 counts using MLE

Simulated 105 random X-ray event lists assuming the
MLE values, and refit them using MLE:
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Error Propagation

How do we estimate the uncertainty on a parameter
(e.g., flux) we derive from the parameters we
estimated from the data?

Classical approach: do error propagation:

f 4 4 0')2](‘
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Better and easier method: just use output from MC
simulation



Using MC for Hypothesis Testing

Recall that we can use the likelihood ratio or F
test to assess the evidence for additional
components

Unfortunately, often the distribution of the
LR or F statistic under the null hypothesis is
not known

So, we use MC techniques to estimate the
sampling distribution of the LR under the null
hypothesis (i.e., assuming the simpler model)



Example: Spectral Line revisited

Recall that before we used the F-test to assess
the evidence for a spectral line over a power-law
continuum

We could do this because we fixed the line
centroid and width, and allowed it to be an
emission or absorption line

But what happens when we test for an emission
line, and/or treat the center and width as free
parameters?

Can’t use F-test (or LRT)!



Monte Carlo test for an emission

line

We can’t use the F-test since we don’t know the

sampling distribution under the null hypothesis that
are spectrum is a power-law:

The models are not nested: the line centroid and width are
undefined under the simpler power-law model

Since we are testing for an emission line, the line flux is on

the boundary of the parameter space under the simpler
model

So, instead, use simulation to estimate the sampling
distribution (e.qg., see Protassov et al. 2002)



MC Algorithm for testing for a

emission line

For Gaussian data, calculate the MLE under both
models. Compute the difference in x2

Simulate a new data set assuming the best-fit
values for the simpler power-law only model

Fit the simulated data for both models. Compute
the difference in x2

Repeat numerous times.

Compare the actual observed value of x2with the
simulated distribution of 2. Is it consistent?



Result for Power-law + Spectral Line
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If Testing for Multiple Lines...

If the number of additional components
depends on your inspection of the residuals,
you need to simulate this

If possible, do not be an additional source of
randomness in your analysis, you are very
hard to simulate!



Setting an Upper Limit on the Line

Emission

Suppose we can't rule out the null hypothesis of no
emission line, can we at least estimate an upper limit
on the line flux?

Can get an approximate estimate using simulation:

Simulate numerous data sets based on best-fit of model
which includes emission line component

Fit each of these simulated data set

Find the value where, say, 99% of the values for the
simulated data sets are below

Definition still a matter of debate, see (Kashyap et al.
2010, arXiv:1006.4334)



Result for Power-law + Emission

Line
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Bayesian Methods

In contrast to previous methods, Bayesian methods
do not focus on obtaining an estimate of a quantity

Instead, they want to directly calculate the probability
distribution of the quantity, given the data

So, the focus is more on how we can constrain the
quantity of interest, and not in obtaining a single
‘best-fit’

In many ways, this is more similar to what we do as
astronomers (businesses, on the other hand, usually
want an estimate, since they need to decide a single
course of action)



The posterior distribution

The goal of all Bayesian methods is the
‘posterior’ probability distribution, p(8]y)

Recall that p(x,y) = p(x|y)p(y)
Therefore, the posterior is

p(@1y) < p(yl0)p(0)

The term p(0) is the ‘prior’ distribution. It is up to
the researcher to choose a prior which quantifies
our knowledge of 8, regardless of the data




Bayesians vs Frequentists (Classical

Methods)

FREQUENTISTS (CLASSICAL) BAYESIANS

View the 'true’ parameter View the true parameter as
value as fixed, and the data random (unknown), and the
random data as fixed (known)

Focus on obtaining an Focus on calculating the
estimate of a quantity probability distribution of the
Uncertainties are derived parameter, given the data
based on estimating the Subjective (but not as much
sampling distribution of as frequentists claim)

the estimator _
Can sometimes be more

Objective (sort of...) computationally difficult



Why use Bayesian Methods?

As we've seen, for most realistic data analysis

problems, it is very difficult to find the sampling
distribution of an estimator

Consequently, confidence intervals are hard to
estimate

Bayesian methods avoid this: they directly
calculate the probability distribution of the
parameters, given the data

So, they give results which are exact and usually
easier to interpret (and thus more trustworthy!)



The posterior probability and x?2

Recall that for Gaussian data, the likelihood is

p(y 10) xexp{-3x"(y,0)}
So, the posterior probability distribution is

p(01y) x p(0)p(y 10) x p(B)exp{—1 x*(y.0)}

If we use a uniform prior on our parameters,
the Bayesian approach seeks to map out the
X2 space for Gaussian data




Low Counts Example, Part llI

Recall that for our power-law fit to ~ 25 counts, we
used the Poisson likelihood function:

plkys... ke, 10) = | [ (kD" E*T exp(-koE;T)
=1

We will assume a uniform prioron k_ and I

The posterior for k, and I is then:

pO1k,....k) o | [kD"k" E;" exp(-k,E;")
i=1




Example: Comparison of Classical,

Monte Carlo, and Bayesian results
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Bayesian testing for additional

components in a spectrum

Different methods have been proposed, but for
semi-nested models | recommend this simple
and straightforward approach:

Compute the marginal posterior for the additional
parameters of the more complicated model

Find the probability that they have the value needed
to reduce the more complicated model to the simpler
one

If this probability is very low, the data prefer the more
complicated model



Example procedure for testing for

an emission line

Suppose our model for the X-ray spectrum is
a power-law + an emission line

To assess the evidence for an emission line:

Compute the marginal probability distribution of
the line flux, given the observed data

Is there a negligible amount of probability near
zero line flux?

If yes, then you have found evidence for an emission line

If no, then you can’t say if there’s an emission line or not,
but you can place an upper limit on the line flux



Example: Bayesian analysis of

emission line on real data
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This is really just the tip of the

Iceberg

Currently there is much active research regarding astrophysical data analysis, and
much work needs to be done!

Some outstanding problems and current issues include

How to test for additional components
How deal to incorporate calibration errors, or more generally systematics
What do we mean by an upper limit

How do we characterize and estimate the variability of an object?

These issues only deal with what we can measure from the detector, but there’s
much more after we get our measurements!

How do we fit a straight line to data contaminated by measurement errors and
containing upper limits?

How do we estimate the distribution of quantities subject to data truncation (e.qg.,
luminosity functions from flux-limited samples?)

How can we calculate distributions of quantities which we estimate (or derive) from our
data, such as black hole mass, accretion rate, and spin?



