## A Appendix

### I Atomic data

Section 2.1 deals with the analysis of absorbed spectra. For the investigation of this absorption, some atomic data is necessary, which is compiled in this section.

A more detailed list can be found in form of S-Lang data structures in the atomicDatafeature of the module lineProfile, which is available online at http://pulsar.sternwarte. uni-erlangen.de/hanke/diplomathesis/code/.

#### I.1 Bound-free transition edge-energies and ISM abundances

Photoionization processes as described in Sect. 2.1.1 can only occur for photon-energies above the ionization threshold of the specific atom. The latter is listed for the first 30 elements in Table A I.1. The K-edge (ionization energy for a 1s electron) is given as well as both L-edges ( $L_1$  for the ionization of a 2s electron,  $L_2$  for a 2p electron). Not every element produces a strong photoabsorption edge, as the optical thickness depends also on the atomic abundance (cf. Eqs. 2.3 and 5.1). To find the astrophysically relevant atoms, the abundances in the interstellar medium (as well as the solar abundances for comparison) are also included:

Table A I.1: Neutral K- and L-edge energies and wavelengths (Verner & Yakovlev, 1995) and relative abundances  $A_Z^{\text{ISM}}$  in the interstellar medium (Wilms et al., 2000), compared with the solar abundances  $A_Z^{\odot}$  (reviewed by Asplund et al., 2005).

| $_{Z}(\text{element})$                       | $_{1}\mathrm{H}$   | $_{2}\mathrm{He}$ | $_{3}\mathrm{Li}$  | $_4\mathrm{Be}$    | $_{5}\mathrm{B}$  | $_{6}\mathrm{C}$  | $_7\mathrm{N}$     | $_{8}O$            | $_9\mathrm{F}$     | $_{10}\mathrm{Ne}$ |
|----------------------------------------------|--------------------|-------------------|--------------------|--------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|
| $E_K/\mathrm{keV}$                           | 0.014              | 0.025             | 0.064              | 0.119              | 0.194             | 0.29              | 0.40               | 0.54               | 0.69               | 0.87               |
| $\lambda_K/{ m \AA}$                         | 912                | 504               | 193                | 104                | 63.9              | 42.6              | 30.6               | 23.0               | 17.9               | 14.25              |
| $E_{L_1}/\text{keV}$                         |                    |                   | 0.005              | 0.009              | 0.014             | 0.019             | 0.025              | 0.029              | 0.038              | 0.049              |
| $\lambda_{L_1}/\text{\AA}$                   |                    |                   | 2300               | 1330               | 882               | 639               | 488                | 435                | 327                | 256                |
| $E_{L_2}/\text{keV}$                         |                    |                   |                    |                    | 0.008             | 0.011             | 0.015              |                    | 0.017              | 0.022              |
| $\lambda_{L_2}/{ m \AA}$                     |                    |                   |                    |                    | 1494              | 1101              | 853                |                    | 712                | 575                |
| $12 + \log A_Z^{\odot}$                      | 12.0               | 10.93             | 1.05               | 1.38               | 2.70              | 8.39              | 7.78               | 8.66               | 4.56               | 7.84               |
| $12 + \log A_Z^{\mathrm{ISM}}$               | 12.0               | 10.99             |                    |                    |                   | 8.38              | 7.88               | 8.69               |                    | 7.94               |
| $A_Z^{ m ISM}/A_{ m 28}^{ m \overline{ISM}}$ | 891 000            | 87100             |                    |                    |                   | 214               | 67.6               | 437                |                    | 77.6               |
|                                              |                    |                   |                    |                    |                   |                   |                    |                    |                    |                    |
|                                              |                    |                   |                    |                    |                   |                   |                    |                    |                    |                    |
| $_{Z}(\text{element})$                       | <sub>11</sub> Na   | $_{12}Mg$         | $_{13}\mathrm{Al}$ | $_{14}\mathrm{Si}$ | $_{15}\mathrm{P}$ | $_{16}\mathrm{S}$ | $_{17}\mathrm{Cl}$ | $_{18}\mathrm{Ar}$ | $_{19}\mathrm{K}$  | $_{20}$ Ca         |
| $E_K/\mathrm{keV}$                           | 1.08               | 1.31              | 1.57               | 1.85               | 2.15              | 2.48              | 2.83               | 3.20               | 3.61               | 4.04               |
| $\lambda_K/\text{\AA}$                       | 11.49              | 9.46              | 7.91               | 6.72               | 5.76              | 5.01              | 4.38               | 3.87               | 3.43               | 3.07               |
| $E_{L_1}/\text{keV}$                         | 0.071              | 0.094             | 0.126              | 0.156              | 0.194             | 0.235             | 0.278              | 0.326              | 0.384              | 0.443              |
| $\lambda_{L_1}/{ m \AA}$                     | 175                | 132               | 98.7               | 79.5               | 63.9              | 52.8              | 44.6               | 38.0               | 32.3               | 28.0               |
| $E_{L_2}/\mathrm{keV}$                       | 0.038              | 0.055             | 0.080              | 0.106              | 0.140             | 0.170             | 0.209              | 0.249              | 0.301              | 0.352              |
| $\lambda_{L_2}/\text{\AA}$                   | 325                | 226               | 154                | 117                | 88.6              | 72.9              | 59.3               | 49.8               | 41.1               | 35.2               |
| $12 + \log A_Z^{\odot}$                      | 6.17               | 7.53              | 6.37               | 7.51               | 5.36              | 7.14              | 5.50               | 6.18               | 5.08               | 6.31               |
| $12 + \log A_Z^{\mathrm{ISM}}$               | 6.16               | 7.40              | 6.33               | 7.27               | 5.42              | 7.09              | 5.12               | 6.41               |                    | 6.20               |
| $A_Z^{ m ISM}/A_{28}^{ m ISM}$               | 1.29               | 22.4              | 1.91               | 16.6               | 0.234             | 11.0              | 0.117              | 2.29               |                    | 1.41               |
|                                              |                    |                   |                    |                    |                   |                   |                    |                    |                    |                    |
|                                              |                    |                   |                    |                    |                   |                   |                    |                    |                    |                    |
| $_{Z}(\text{element})$                       | $_{21}\mathrm{Sc}$ | $_{22}$ Ti        | $_{23}V$           | $_{24}\mathrm{Cr}$ | $_{25}Mn$         | $_{26}$ Fe        | $_{27}$ Co         | $_{28}$ Ni         | $_{29}\mathrm{Cu}$ | $_{30}$ Zn         |
| $E_K/\mathrm{keV}$                           | 4.49               | 4.97              | 5.48               | 6.00               | 6.55              | 7.12              | 7.73               | 8.35               | 8.99               | 9.67               |
| $\lambda_K/A$                                | 2.76               | 2.49              | 2.27               | 2.07               | 1.89              | 1.74              | 1.60               | 1.49               | 1.38               | 1.28               |
| $E_{L_1}/\text{keV}$                         | 0.503              | 0.569             | 0.638              | 0.703              | 0.782             | 0.857             | 0.940              | 1.02               | 1.11               | 1.20               |
| $\lambda_{L_1}/\text{\AA}$                   | 24.6               | 21.8              | 19.43              | 17.64              | 15.86             | 14.47             | 13.19              | 12.11              | 11.21              | 10.31              |
| $E_{L_2}/\text{keV}$                         | 0.405              | 0.464             | 0.527              | 0.585              | 0.655             | 0.724             | 0.800              | 0.876              | 0.94               | 1.04               |
| $\lambda_{L_2}/\text{\AA}$                   | 30.6               | 26.7              | 23.5               | 21.2               | 18.92             | 17.13             | 15.50              | 14.15              | 13.09              | 11.96              |
| $12 + \log A_Z^{\odot}$                      | 3.05               | 4.90              | 4.00               | 5.64               | 5.39              | 7.45              | 4.92               | 6.23               | 4.21               | 4.60               |
| $12 + \log A_Z^{\rm ISM}$                    |                    | 4.81              |                    | 5.51               | 5.34              | 7.43              | 4.92               | 6.05               |                    |                    |
| $A_Z^{\rm ISM}/A_{28}^{\rm ISM}$             |                    | 0.0575            |                    | 0.288              | 0.195             | 24.0              | 0.0741             | 1.00               |                    |                    |

#### I.2 Bound-bound line-transition wavelengths

The identification of absorption lines requires a large database of transition wavelengths. This section quotes the most important lines, which were also used in this analysis. It can never be a replacement for the numerous complete tables: All quoted wavelengths are either from the atomic database ATOMDB (see also Table A I.7) or from the table of Verner et al. (1996), except of the Na X triplet, which was only found in Mewe et al. (1985).

#### H-like ions

The strongest lines of H-like ions belong to the Lyman series (Table A I.2). They are also most important in photoionized plasmas, as they start at the ground state. The energies are relatively large, the spin-orbit coupling is therefore usually not resolved – in contrast to the lines of the Balmer series (Table A I.2), which comprises the transitions from the first excited state (n = 2) with higher states, where the energy differences are more easily noticeable.

| Table AI.2: Wavelengths [in . | Å] of H-like ions' | transitions from the gro | ound state $1s$ ( <sup>2</sup> | $^{2}S_{1/2})$ |
|-------------------------------|--------------------|--------------------------|--------------------------------|----------------|
|-------------------------------|--------------------|--------------------------|--------------------------------|----------------|

| trans.              | nomo        | Ο     | Ne    | Na    | Mg   | Al   | $\operatorname{Si}$ | $\mathbf{S}$ | $\operatorname{Ar}$ | Ca   | Fe   | Ni     |
|---------------------|-------------|-------|-------|-------|------|------|---------------------|--------------|---------------------|------|------|--------|
| $1s \to np$         | name        | VIII  | Х     | XI    | XII  | XIII | XIV                 | XVI          | XVIII               | XX   | XXVI | XXVIII |
| $1s \rightarrow 2p$ | Ly $\alpha$ | 18.97 | 12.13 | 10.03 | 8.42 | 7.17 | 6.18                | 4.73         | 3.73                | 3.02 | 1.78 | 1.53   |
| $1s \rightarrow 3p$ | Ly $\beta$  | 16.01 | 10.24 | 8.46  | 7.11 | 6.05 | 5.22                | 3.99         | 3.15                | 2.55 | 1.50 | 1.29   |
| $1s \rightarrow 4p$ | Ly $\gamma$ | 15.18 | 9.71  | 8.02  | 6.74 | 5.74 | 4.95                | 3.78         | 2.99                | 2.42 | 1.42 | 1.23   |
| $1s \rightarrow 5p$ | Ly $\delta$ | 14.82 | 9.48  | 7.83  | 6.58 | 5.60 | 4.83                | 3.70         | 2.92                | 2.36 | 1.39 | 1.20   |

Table A I.3: Wavelengths [in Å] of H-like ions' transitions from the first excited state (n = 2)

| 9                                       | L J    |       |           |        |              |       |       | (    | /      |
|-----------------------------------------|--------|-------|-----------|--------|--------------|-------|-------|------|--------|
| transition                              | Ο      | Ne    | Na Mg A   | l Si   | $\mathbf{S}$ | Ar    | Ca    | Fe   | Ni     |
| transition                              | VIII   | Х     | XI XII XI | II XIV | XVI          | XVIII | XX    | XXVI | XXVIII |
| $2s (^2S_{1/2}) \to 3p (^2P_{1/2})$     | 102.40 | 65.49 | 45.44     | 33.35  | 25.51        | 20.13 | 16.28 | 9.58 | 8.25   |
| $2s ({}^2S_{1/2}) \to 3p ({}^2P_{3/2})$ | 102.36 | 65.45 | 45.40     | 33.31  | 25.46        | 20.08 | 16.23 | 9.54 | 8.20   |
| $2p ({}^2P_{1/2}) \to 3s ({}^2S_{1/2})$ | 102.39 | 65.49 | 45.44     | 33.35  | 25.50        | 20.12 | 16.27 | 9.58 | 8.25   |
| $2p ({}^2P_{3/2}) \to 3s ({}^2S_{1/2})$ | 102.55 | 65.64 | 45.59     | 33.51  | 25.66        | 20.28 | 16.43 | 9.74 | 8.40   |
| $2s (^2S_{1/2}) \to 4p (^2P_{1/2})$     | 75.86  | 48.52 | 33.66     | 24.71  | 18.90        | 14.91 | 12.06 | 7.10 | 6.11   |
| $2s ({}^2S_{1/2}) \to 4p ({}^2P_{3/2})$ | 75.84  | 48.50 | 33.65     | 24.70  | 18.89        | 14.90 | 12.05 | 7.09 | 6.10   |
| $2p (^2P_{1/2}) \to 4s (^2S_{1/2})$     | 75.85  | 48.51 | 33.66     | 24.71  | 18.89        | 14.91 | 12.06 | 7.10 | 6.11   |
| $2p(^2P_{1/2}) \to 4s(^2S_{1/2})$       | 75.94  | 48.60 | 33.75     | 24.79  | 18.98        | 15.00 | 12.15 | 7.19 | 6.20   |

#### He-like ions

As described in Sect. 2.1.2, He-like triplets – resonance (r), intercombination (i) and forbidden (f) line – can be very important for the diagnostics of an optically thin plasma. Table A I.4 lists their wavelengths. As the triplets connect, however, only n = 1 and n = 2 levels, see Table A I.5 for further transitions from the ground state  $1s^2$  ( ${}^1S_0$ ) to 1s np ( ${}^1P_1$ ) states.

Table A I.4: Wavelengths [in Å] of He-like ions' triplet transitions (from the  $1s^2$  (<sup>1</sup>S<sub>0</sub>) state)

|   |                       |       |       |       |      | -    |                     |              | · ·                 |      | · · · · | - /   |
|---|-----------------------|-------|-------|-------|------|------|---------------------|--------------|---------------------|------|---------|-------|
|   | uppor lovol           | 0     | Ne    | Na    | Mg   | Al   | $\operatorname{Si}$ | $\mathbf{S}$ | $\operatorname{Ar}$ | Ca   | Fe      | Ni    |
|   | upper lever           | VII   | IX    | Х     | XI   | XII  | XIII                | XV           | XVII                | XIX  | XXV     | XXVII |
| r | $1s2p(^{1}P_{1})$     | 21.60 | 13.45 | 11.00 | 9.17 | 7.76 | 6.65                | 5.04         | 3.95                | 3.18 | 1.85    | 1.59  |
| i | $1s2p({}^{3}P_{1,2})$ | 21.80 | 13.55 | 11.08 | 9.23 | 7.80 | 6.69                | 5.07         | 3.97                | 3.19 | 1.86    | 1.60  |
| f | $1s2s~(^{3}S_{1})$    | 22.10 | 13.70 | 11.19 | 9.31 | 7.87 | 6.74                | 5.10         | 3.99                | 3.21 | 1.87    |       |

| Table AI.5: Wavelengths [in | Å] of He-like ions' | transitions from the | $s  1s^2  (^1S_0)$ | ground state |
|-----------------------------|---------------------|----------------------|--------------------|--------------|
|-----------------------------|---------------------|----------------------|--------------------|--------------|

| uppor loval         | 0     | Ne    | Na    | Mg   | Al   | $\operatorname{Si}$ | $\mathbf{S}$ | $\operatorname{Ar}$ | Ca   | Fe   | Ni    |
|---------------------|-------|-------|-------|------|------|---------------------|--------------|---------------------|------|------|-------|
| upper lever         | VII   | IX    | Х     | XI   | XII  | XIII                | XV           | XVII                | XIX  | XXV  | XXVII |
| $1s2p(^{1}P_{1})$   | 21.60 | 13.45 | 11.00 | 9.17 | 7.76 | 6.65                | 5.04         | 3.95                | 3.18 | 1.85 | 1.59  |
| $1s3p(^{1}P_{1})$   | 18.63 | 11.54 | 9.43  | 7.85 | 6.63 | 5.68                | 4.30         | 3.37                | 2.71 | 1.57 | 1.35  |
| $1s4p (^{1}P_{1})$  | 17.77 | 11.00 | 8.98  | 7.47 | 6.31 | 5.40                | 4.09         | 3.20                | 2.57 | 1.50 | 1.28  |
| $1s5p\ (^{1}P_{1})$ | 17.40 | 10.77 | 8.79  | 7.31 | 6.18 | 5.29                | 4.00         | 3.13                | 2.51 | 1.46 | 1.25  |
| $1s6p (^{1}P_{1})$  | 17.20 | 10.64 | 8.69  | 7.22 | 6.10 | 5.22                | 3.95         | 3.10                |      |      |       |
| $1s7p(^{1}P_{1})$   | 17.09 | 10.57 | 8.63  | 7.17 | 6.06 | 5.19                | 3.92         |                     |      |      |       |
| $1s8p(^{1}P_{1})$   | 17.01 | 10.51 | 8.59  | 7.14 | 6.03 | 5.16                | 3.90         |                     |      |      |       |

#### Li-like ions

The ground state of the alkali metal Lithium is  $[1s^2] 2s ({}^2S_{1/2})$ . The strongest transitions lead therefore (similar to the Balmer series) to  $[1s^2] np ({}^2P)$  states. Table A I.6 lists the wavelength of these transitions and includes in case of n = 3 both the  ${}^2P_{1/2}$  and the  ${}^2P_{3/2}$  state, as the difference due to spin-orbit coupling might be resolvable.

| Table A I.6: Wavelengths [in A] of Li-like ions' transitions from the ground state $[1s^2] 2s ({}^2S_{1/2})$ |        |       |       |       |       |       |              |       |       |       |      |
|--------------------------------------------------------------------------------------------------------------|--------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|------|
| uppor loval                                                                                                  | 0      | Ne    | Na    | Mg    | Al    | Si    | $\mathbf{S}$ | Ar    | Ca    | Fe    | Ni   |
|                                                                                                              | VI     | VIII  | IX    | Х     | XI    | XII   | XIV          | XVI   | XVIII | XXIV  | XXVI |
| $[1s^2] 3p ({}^2P_{1/2})$                                                                                    | 150.09 | 88.08 | 70.65 | 57.88 | 48.34 | 40.95 | 30.47        | 23.59 | 18.73 | 10.66 | 9.10 |
| $[1s^2]  3p  ({}^2P_{3/2})$                                                                                  | 150.12 | 88.12 | 70.61 | 57.92 | 48.30 | 40.91 | 30.43        | 23.55 | 18.69 | 10.62 | 9.06 |
| $[1s^2] 4p$                                                                                                  | 115.8  | 67.4  | 53.9  | 44.1  | 36.7  | 31.0  | 23.0         | 17.74 | 14.09 | 8.00  | 6.82 |
| $[1s^2]5p$                                                                                                   | 104.8  | 60.8  | 48.6  | 39.7  | 33.0  | 27.9  | 20.7         | 15.93 | 12.64 | 7.17  | 6.11 |
| $[1s^2] 6p$                                                                                                  |        |       |       |       |       |       |              |       | 11.99 | 6.79  |      |
| $[1s^2] 7p$                                                                                                  |        |       |       |       |       |       |              |       | 11.62 |       |      |

#### Level numbers in the ATOMDB

For convenient access the atomic database ATOMDB, e.g., via the trans(Z,ion,up,low)function<sup>1</sup> in ISIS or the web-guide (http://cxc.harvard.edu/atomdb/WebGUIDE/), the meaning of the level numbers for H-like, He-like and Li-like ions have been compiled in Table AI.7.

| level $\#$ | H-like            | He-like                        | Li-like                   |
|------------|-------------------|--------------------------------|---------------------------|
| 25         | $5g(^2G_{9/2})$   | $1s4d\left({}^{3}D_{2}\right)$ | $[1s^2]  6s  (^2S_{1/2})$ |
| 24         | $5g(^2G_{7/2})$   | $1s4d(^{3}D_{1})$              | $[1s^2] 5g (^2G_{9/2})$   |
| 23         | $5f(^2F_{7/2})$   | $1s4p(^{1}P_{1})$              | $[1s^2] 5g (^2G_{7/2})$   |
| 22         | $5f(^2F_{5/2})$   | $1s4p({}^{3}P_{2})$            | $[1s^2]5f(^2F_{7/2})$     |
| 21         | $5d(^2D_{3/2})$   | $1s4p({}^{3}P_{1})$            | $[1s^2]5f(^2F_{7/2})$     |
| 20         | $5d(^2D_{3/2})$   | $1s4p({}^{3}P_{0})$            | $[1s^2]5d(^2D_{5/2})$     |
| 19         | $5p(^2P_{3/2})$   | $1s4s~(^{1}S_{0})$             | $[1s^2]  5d  (^2D_{3/2})$ |
| 18         | $5p(^2P_{1/2})$   | $1s4s~(^{3}S_{1})$             | $[1s^2] 5p (^2P_{3/2})$   |
| 17         | $5s(^2S_{1/2})$   | $1s3d(^{1}D_{2})$              | $[1s^2] 5p (^2P_{1/2})$   |
| 16         | $4f(^2F_{7/2})$   | $1s3d(^{3}D_{3})$              | $[1s^2] 5s (^2S_{1/2})$   |
| 15         | $4f(^2F_{5/2})$   | $1s3d(^{3}D_{2})$              | $[1s^2] 4f ({}^2F_{7/2})$ |
| 14         | $4d(^2D_{5/2})$   | $1s3d(^{3}D_{1})$              | $[1s^2] 4f ({}^2F_{5/2})$ |
| 13         | $4d(^2D_{3/2})$   | $1s3p(^{1}P_{1})$              | $[1s^2] 4d (^2D_{5/2})$   |
| 12         | $4p(^2P_{3/2})$   | $1s3p({}^{3}P_{2})$            | $[1s^2] 4d (^2D_{3/2})$   |
| 11         | $4p(^2P_{1/2})$   | $1s3p(^{3}P_{1})$              | $[1s^2] 4p (^2P_{3/2})$   |
| 10         | $4s(^2S_{1/2})$   | $1s3p(^{3}P_{0})$              | $[1s^2] 4p (^2P_{1/2})$   |
| 9          | $3d(^2D_{5/2})$   | $1s3s~(^{1}S_{0})$             | $[1s^2] 4s (^2S_{1/2})$   |
| 8          | $3d(^2D_{3/2})$   | $1s3s(^{3}S_{1})$              | $[1s^2]  3d  (^2D_{5/2})$ |
| 7          | $3p(^2P_{3/2})$   | $1s2p(^{1}P_{1})$              | $[1s^2]  3d  (^2D_{3/2})$ |
| 6          | $3p(^2P_{1/2})$   | $1s2p({}^{3}P_{2})$            | $[1s^2]  3p  (^2P_{3/2})$ |
| 5          | $3s(^2S_{1/2})$   | $1s2p({}^{3}P_{1})$            | $[1s^2]  3p  (^2P_{1/2})$ |
| 4          | $2p(^2P_{3/2})$   | $1s2p({}^{3}P_{0})$            | $[1s^2]  3s  (^2S_{1/2})$ |
| 3          | $2p(^{2}P_{1/2})$ | $1s2s~(^{1}S_{0})$             | $[1s^2] 2p (^2P_{3/2})$   |
| 2          | $2s(^2S_{1/2})$   | $1s2s(^{3}S_{1})$              | $[1s^2] 2p (^2P_{1/2})$   |
| 1          | $1s(^2S_{1/2})$   | $1s^2 ({}^1S_0)$               | $[1s^2] 2s (^2S_{1/2})$   |

Table A I.7: Quantum states assigned to the first 25 level numbers in the ATOMDB

<sup>&</sup>lt;sup>1</sup> The function **trans** returns a boolean array telling for every line-id whether the transition matches or not. The list of matching line-ids can be obtained by where(trans(Z,ion,up,low)).

#### Further iron ions

Continuing with further less-ionized ions of all atoms is not useful due to the limited energyrange and resolution of a *Chandra*/HETGS observation. Therefore, only further iron ions will be discussed in the rest of this section. The excitation of Be-like and B-like ions can, to some extent, still be treated in a systematic way similar to the series as above for very highly ionized ions. This is, however, hardly possible for the overwhelming number of L-shell transitions of lower ionized iron in the range between  $\approx 7$  Å and  $\approx 17$  Å. Therefore, the following tables only present the strongest transitions, which is even not well defined, as several weaker transitions blend in many cases and may thus effectively again produce stronger features.

#### Table AI.8: Further iron lines

The quoted wavelengths rely on the ATOMDB, as the table of Verner et al. (1996) is not complete and its combination of several transitions into multiplets is not so clear.

| (a) Fe XXIII (Be-like ion)                        |     |             |  |  |  |  |  |  |
|---------------------------------------------------|-----|-------------|--|--|--|--|--|--|
| transition from                                   | #   | $ \lambda $ |  |  |  |  |  |  |
| $[1s^2] 2s^2 ({}^1S_0)$                           | 1   | [Å]         |  |  |  |  |  |  |
| $\rightarrow [1s^2]  2s3p \left({}^1P_1\right)$   | 15  | 10.98       |  |  |  |  |  |  |
| $\rightarrow [1s^2]  2s4p \left( {}^1P_1 \right)$ | 52  | 8.30        |  |  |  |  |  |  |
| $\rightarrow [1s^2]  2s5p \left({}^1P_1\right)$   | 104 | 7.47        |  |  |  |  |  |  |
| $\rightarrow [1s^2]  2s3p \left({}^3P_1\right)$   | 13  | 11.02       |  |  |  |  |  |  |
| $\rightarrow [1s^2]  2s4p \left({}^3P_1\right)$   | 50  | 8.32        |  |  |  |  |  |  |
|                                                   |     |             |  |  |  |  |  |  |

| (b) Fe XXII (B-lik                          | æ ion) |           |
|---------------------------------------------|--------|-----------|
| transition from                             | #      | $\lambda$ |
| $[1s^2 2s^2] 2p (^2P_{1/2})$                | 1      | [Å]       |
| $\rightarrow [1s^2 2s^2] 3s (^2S_{1/2})$    | 16     | 12.25     |
| $\rightarrow [1s^2 2s^2] 4s (^2S_{1/2})$    | 69     | 9.06      |
| $\rightarrow [1s^2  2s^2]  5s  (^2S_{1/2})$ | 148    | 8.11      |
| $\rightarrow [1s^2 2s^2]  3d  (^2D_{3/2})$  | 21     | 11.77     |
| $\rightarrow [1s^2  2s^2]  4d  (^2D_{3/2})$ | 72     | 8.97      |
| $\rightarrow [1s^2  2s^2]  5d  (^2D_{3/2})$ | 151    | 8.09      |
| $\rightarrow [1s^2] 2s2p  3p_{3/2}$         | 30     | 11.49     |
| $\rightarrow [1s^2] 2s2p  3p_{3/2}$         | 32     | 11.43     |

(c) Fe XXI (C-like ion)

| transition from                                       | #   | $\lambda$ | A             |
|-------------------------------------------------------|-----|-----------|---------------|
| $[1s^2 2s^2] 2p^2 ({}^3P_0)$                          | 1   | [Å]       | $[10^{12}/s]$ |
| $\rightarrow [1s^2  2s^2]  2p  3d  (^3D_0)$           | 40  | 12.28     | 18.2          |
| $\rightarrow [1s^2] 2s  2p_{1/2}^2  3p_{3/2}$         | 58  | 11.97     | 3.09          |
| $\rightarrow [1s^2] 2s  2p_{1/2}  2p_{3/2}  3p_{3/2}$ | 60  | 11.95     | 1.82          |
| $\rightarrow [1s^2 2s^2] 2p 4d ({}^3P_1)$             | 248 | 9.48      | 6.12          |
| $\rightarrow [1s^2] 2s 2p_{1/2}^2 4p_{3/2}$           | 283 | 9.19      | 2.88          |
| $\rightarrow [1s^2  2s^2]  2p  5d_{3/2}$              | 460 | 8.57      | 2.85          |

| transition from                                             | #                       | $  \lambda$ | A                                |
|-------------------------------------------------------------|-------------------------|-------------|----------------------------------|
| $[1s^2 2s^2] 2p^3 ({}^4S_{3/2})$                            | 1                       | [Å]         | $[10^{12}/s]$                    |
| $\rightarrow [1s^2 2s^2] 2p^2 3s (^4P_{1/2})$               | 16                      | 13.96       | 1.19                             |
| $\rightarrow [1s^2  2s^2]  2p^2  3s  (^4P_{3/2})$           | 17                      | 13.84       | 1.00                             |
| $\rightarrow [1s^2  2s^2]  2p^2  3s  (^4P_{5/2})$           | 19                      | 13.77       | 1.02                             |
|                                                             | 42                      | 13.06       | 2.62                             |
|                                                             | 45                      | 12.99       | 2.01                             |
|                                                             | $47,\!48$               | 12.9712.96  | 0.66 + 3.46                      |
| $\rightarrow \left[1s^2  2s^2\right] 2p^2  3d  (\dots)$     | $50,\!51$               | 12.9212.91  | 0.74 + 4.91                      |
|                                                             | $56,\!58$               | 12.8612.85  | 12.1 + 19.2                      |
|                                                             | $59,\!60$               | 12.8312.82  | 4.90 + 17.1                      |
|                                                             | $62,\!63$               | 12.7612.75  | 0.25 + 1.44                      |
| $[1 a^2] 2 a 2m^3 2m ()$                                    | 72,73                   | 12.58       | 1.44 + 4.39                      |
| $\rightarrow$ [1s ] 2s 2p 3p ()                             | 75                      | 12.53       | 4.23                             |
|                                                             | 285,286                 | 10.1310.12  | 0.39 + 2.12                      |
| $\rightarrow \left[1s^2  2s^2\right] 2p^2  4d  (\dots)$     | $297,\!299 -\! 302$     | 10.0410.06  | 1.16 + 0.48 + 2.80 + 0.64 + 0.63 |
|                                                             | $305,\!306,\!309,\!313$ | 9.9910.01   | 3.01 + 5.80 + 6.56 + 0.81        |
| $[1 a^2] 2 a 2m^3 4m ($                                     | 363,364,365             | 9.739.72    | 2.42 + 2.42 + 2.47               |
| $\rightarrow$ [1s ] 2s 2p <sup>+</sup> 4p ()                | $518,\!526$             | 9.209.19    | 1.04 + 1.43                      |
| $[1 a^2 2 a^2] 2m^2 5d$                                     | 555,556,559,564         | 9.119.10    | 0.67 + 0.29 + 1.46 + 0.36        |
| $\rightarrow \lfloor 1s \ 2s \ \rfloor 2p^2 \ 3a \ (\dots)$ | $590,\!592,\!594$       | 9.079.06    | 1.16 + 2.51 + 3.21               |
| $\rightarrow$                                               | 700-702                 | 8.82        | 1.07 + 1.27 + 1.37               |

(d) Fe xx (N-like ion)

Table AI.8b includes only the strongest transitions of Fe XXII with  $A > 5 \times 10^{12}$ /s. Table AI.8e lists the strongest  $(A > 5 \times 10^{12}$ /s) lines of Fe XIX and Table AI.8f lists all lines of Fe XVIII with  $A > 9 \times 10^{11}$ /s.

| (e) re XIX (                                           | O-like lon) |           |               |
|--------------------------------------------------------|-------------|-----------|---------------|
| transition from                                        | #           | $\lambda$ | A             |
| $[1s^2 2s^2] 2p^4 ({}^3P_2)$                           | 1           | [Å]       | $[10^{12}/s]$ |
| $\rightarrow [1s^2 2s^2] 2p_{1/2} 2p_{3/2}^2 3d_{5/2}$ | 53          | 13.79     | 5.35          |
| $\rightarrow [1s^2 2s^2] 2p^3 (^2D) 3d (^3F_3)$        | 57          | 13.64     | 2.43          |
| $\rightarrow [1s^2  2s^2]  2p^3  3d_{5/2}$             | $65,\!67$   | 13.55     | 4.44 + 2.25   |
| $\rightarrow [1s^2  2s^2]  2p^3  (^2D)  3d  (^3D_3)$   | 68          | 13.52     | 18.7          |
| $\rightarrow [1s^2 2s^2] 2p_{1/2} 2p_{3/2}^2 3d_{3/2}$ | 71          | 13.50     | 12.9          |
| $\rightarrow [1s^2 2s^2] 2p^3 (^2D) 3d (^3S_1 =$       | 74          | 13.46     | 14.1          |
| $\rightarrow [1s^2  2s^2]  2p^3  (^2D)  3d  (^1F_3)$   | 76          | 13.42     | 5.01          |
| $\rightarrow [1s^2] 2s 2p_{1/2} 2p_{3/2}^3 3p_{3/2}$   | 104         | 12.95     | 3.11          |
| $\rightarrow [1s^2] 2s 2p_{1/2}^2 2p_{3/2}^2 3p_{3/2}$ | 106         | 12.93     | 3.37          |
| $\rightarrow [1s^2 2s^2] 2p^3 ({}^4S) 4d ({}^3D_3)$    | 243         | 10.82     | 5.65          |
| $\rightarrow [1s^2 2s^2] 2p^3 (^2D) 4d (^3F_3)$        | 276         | 10.68     | 2.28          |
| $\rightarrow [1s^2 2s^2] 2p^3 (^2D) 4d (^3D_3)$        | 286         | 10.65     | 3.74          |
| $\rightarrow [1s^2  2s^2]  2p^3  (^2D)  4d  (^3P_2)$   | 288         | 10.64     | 5.20          |
| $\rightarrow [1s^2  2s^2]  2p^3  (^2D)  4d  (^3S_1)$   | 292         | 10.63     | 4.78          |
| $\rightarrow [1s^2  2s^2]  2p^3  (^4S)  5d  (^3D_3)$   | 432         | 9.86      | 3.59          |
| $\rightarrow [1s^2 2s^2] 2p_{1/2} 2p_{3/2}^2 5d_{3/2}$ | $532,\!536$ | 9.69      | 2.56 + 2.18   |
| 1 11/2/3/2-3/2                                         | )           |           |               |

#### (e) Fe XIX (O-like ion)

(f) Fe XVIII (F-like ion)

| transition from                                                | #                 | $\lambda$ | A                  |
|----------------------------------------------------------------|-------------------|-----------|--------------------|
| $[1s^2  2s^2]  2p^5  (^2P_{3/2})$                              | 1                 | [Å]       | $[10^{12}/s]$      |
| $\rightarrow [1s^2 2s^2] 2p^4({}^3P) 3s({}^2P_{3/2})$          | 5                 | 16.00     | 1.36               |
| $\rightarrow [1s^2 2s^2] 2p^4 ({}^3P) 3s ({}^2P_{1/2})$        | 8                 | 15.76     | 1.06               |
| $\rightarrow [1s^2 2s^2] 2p^4({}^3P) 3d({}^4P_{1/2})$          | 39                | 14.60     | 2.50               |
| $\rightarrow [1s^2 2s^2] 2p^4 ({}^3P) 3d ({}^4P_{3/2})$        | 40                | 14.57     | 3.09               |
| $\rightarrow [1s^2 2s^2] 2p^4 ({}^3P) 3d ({}^2F_{5/2})$        | 41                | 14.53     | 4.05               |
| $\rightarrow [1s^2 2s^2] 2p^4 ({}^3P) 3d ({}^2D_{5/2})$        | 49                | 14.37     | 6.75               |
| $\rightarrow [1s^2 2s^2] 2p^4(^1D) 3d(\dots)$                  | $52,\!53$         | 14.26     | 12.9 + 1.29        |
| $\rightarrow \left[1s^2  2s^2\right] 2p^4  3d  (\dots)$        | $55,\!56$         | 14.21     | 17.9 + 19.4        |
| $\rightarrow [1s^2 2s^2] 2p^4(^1D) 3d (^2D_{3/2})$             | 57                | 14.16     | 4.03               |
| $\rightarrow [1s^2  2s^2]  2p^4 ({}^1D) 3d  ({}^2P_{1/2})$     | 58                | 14.14     | 4.57               |
| $\rightarrow [1s^2 2s^2] 2p^4 ({}^1S) 3d ({}^2D_{5/2})$        | 59                | 13.95     | 1.04               |
| $\rightarrow [1s^2] 2s 2p_{1/2}^2 2p_{3/2}^3 3p_{3/2})$        | 69                | 13.41     | 1.09               |
| $\rightarrow [1s^2 2s 2p^{5/3}P)3p(^2D_{5/2})$                 | 70                | 13.39     | 1.64               |
| $\rightarrow [1s^2 2s 2p^5({}^3P) 3p({}^2P_{3/2})]$            | 72                | 13.36     | 2.31               |
| $\rightarrow [1s^2] 2s 2p_{1/2} 2p_{3/2}^4 3p(\dots)$          | 73,74             | 13.32     | 3.59 + 1.17        |
| $\rightarrow [1s^2 2s 2p^5(^1P)3p(^2S_{1/2})]$                 | 80                | 13.18     | 1.18               |
| $\rightarrow [1s^2 2s^2] 2p_{1/2}^2 2p_{3/2}^2 4d_{5/2})$      | 136               | 11.57     | 1.53               |
| $\rightarrow [1s^2 2s^2] 2p^4 4d ()$                           | $137,\!138$       | 11.53     | 3.55 + 4.22        |
| $\rightarrow [1s^2 2s^2] 2p^4({}^3P) 4d ({}^2F_{5/2})$         | 164               | 11.42     | 4.75               |
| $\rightarrow [1s^2 2s^2] 2p^4(^1D) 4d(\dots)$                  | $176,\!178,\!180$ | 11.33     | 4.82 + 4.48 + 3.26 |
| $\rightarrow [1s^2 2s^2] 2p_{1/2} 2p_{3/2}^3 4d_{5/2}$         | 182               | 11.31     | 1.09               |
| $\rightarrow [1s^2 2s^2] 2p^4 (^1D) 4d (^2D_{3/2})$            | 181               | 11.29     | 1.28               |
| $\rightarrow [1s^2] 2s 2p_{1/2}^2 2p_{3/2}^3 4p_{3/2}$         | 220               | 10.57     | 1.39               |
| $\rightarrow [1s^2  2s 1s^2 2 p_{1/2}^2 2 p_{3/2}^3 4 p_{3/2}$ | 221               | 10.56     | 1.58               |
| $\longrightarrow [1s^2 2s^2] 2p^4 5d (\dots)$                  | 228,231           | 10.54     | 1.22 + 2.25 + 2.60 |
| $\rightarrow [1s^2 2s^2] 2p^4({}^3P)5d({}^2D_{5/2})$           | 276               | 10.45     | 2.09               |
| $\rightarrow [1s^2  2s^2]  2p_{1/2} 2p_{3/2}^3  5d  (\dots)$   | 323,326,328       | 10.36     | 2.36 + 1.93 + 1.25 |

| (g) Fe XVII (Ne-                                         | like ion | )         |                        |
|----------------------------------------------------------|----------|-----------|------------------------|
| transition from                                          | #        | $\lambda$ | A                      |
| $[1s^2  2s^2  2p^6]  (1S_0)$                             | 1        | [Å]       | $[10^{12}/\mathrm{s}]$ |
| $ \longrightarrow [1s^2  2s^2]  2p^5(^2P)  3s  (^3P_1) $ | 3        | 17.05     | 1.00                   |
| $\rightarrow [1s^2  2s^2]  2p^5(^2P)  3s  (^1P_1)$       | 5        | 16.78     | 0.90                   |
| $\longrightarrow [1s^2 2s^2] 2p^5(^2P) 3d(^3D_1)$        | 23       | 15.26     | 5.87                   |
| $\rightarrow [1s^2  2s^2]  2p^5(^2P)  3d  (^1P_1)$       | 27       | 15.01     | 27.0                   |
| $\longrightarrow [1s^2]  2s  2p^6  3p  (^1P_1)$          | 33       | 13.82     | 3.40                   |
| $\rightarrow [1s^2  2s^2]  2p^5(^2P)  4d  (^3D_1)$       | 59       | 12.27     | 4.21                   |
| $\rightarrow [1s^2  2s^2]  2p^5(^2P)  4d  (^1P_1)$       | 71       | 12.12     | 4.83                   |
| $\rightarrow [1s^2 2s^2] 2p^5(^2P_2) 5d(^3D_1)$          | 93       | 11.25     | 2.87                   |
| $\rightarrow [1s^2  2s^2]  2p^5(^2P)  5d  (^1P_1)$       | 118      | 11.13     | 2.26                   |
| $\longrightarrow [1s^2]  2s  2p^6  4p  (^1P_1)$          | 131      | 11.03     | 1.75                   |
| $\rightarrow [1s^2  2s^2]  2p^5(^2P)  6d  (^3D_1)$       | 155      | 10.77     | 1.90                   |
| $\rightarrow [1s^2  2s^2]  2p^5(^2P)  6d  (^1P_1)$       | 181      | 10.66     | 1.15                   |
| $\longrightarrow [1s^2 2s^2] 2p^5(^2P) 7d(^3D_1)$        | 205      | 10.50     | 1.39                   |
| $\rightarrow [1s^2] 2s  2p^6  5p  (^1P_1)$               | 245      | 10.12     | 0.99                   |

Table A I.8: Further iron lines (end)

#### ΤT Data files from the CXC

It was explained in Section 3.1 how data from the Chandra X-ray observatory is organized and is reduced with CIAO. Primary and secondary data files can be downloaded from http://cda.harvard.edu:9011/chaser/. This appendix contains a file structure listing of the most important involved files and is thought to serve as a reference during the data reduction.

All data files from the Chandra X-ray Center (CXC) are organized in the FITS (flexible image transport system) format. They are fully consistent with the OGIP standards. OGIP is "is a division of the Laboratory for High Energy Astrophysics at Goddard Space Flight Center. They oversee the activities of the HEASARC FITS Working Group (HFWG), which makes sure that FITS formats and keywords conform to the current standards and conventions." (CIAO online dictionary, http://cxc.harvard.edu/ciao/dictionary/ogip.html)

#### II.1 Primary and secondary data files

While primary data products are considered (by CXC) "to be sufficient for most analyses", all secondary (level 1) data products are needed for data reprocessing and thus essential for this work. (Primary products from standard data processing may not always be reliable.)

|            | Table A11.1. Contents of a level 1-event me |                        |                       |                                               |  |
|------------|---------------------------------------------|------------------------|-----------------------|-----------------------------------------------|--|
| block      | #                                           | column                 | $\operatorname{unit}$ | description                                   |  |
|            | 1                                           | time                   | $\mathbf{s}$          | S/C TT corresponding to mid-exposure          |  |
|            | 2                                           | ccd_id                 |                       | CCD reporting event                           |  |
|            | 3                                           | node_id                |                       | CCD serial readout amplifier node             |  |
|            | 4                                           | expno                  |                       | Exposure number of CCD frame containing event |  |
|            | 5                                           | chip(chipx,chipy)      | pixel                 | Chip coords                                   |  |
| ស          | 6                                           | tdet(tdetx,tdety)      | pixel                 | ACIS tiled detector coordinates               |  |
| ENJ        | $\overline{7}$                              | $\det(\det x, \det y)$ | pixel                 | ACIS detector coordinates                     |  |
| EV         | 8                                           | sky(x,y)               | pixel                 | sky coordinates                               |  |
| X          | 9                                           | pha                    | adu                   | total pulse height of event                   |  |
| ΓO         | 10                                          | pha_r                  | adu                   | total read-out pulse height of event          |  |
| Ш.         | 11                                          | corn_pha               |                       | mean of event corner pixel PHA                |  |
|            | 12                                          | energy                 | eV                    | nominal energy of event (eV)                  |  |
|            | 13                                          | pi                     | chan                  | pulse invariant energy of event               |  |
|            | 14                                          | fltgrade               |                       | event grade, flight system                    |  |
|            | 15                                          | grade                  |                       | binned event grade                            |  |
|            | 16                                          | status[4]              |                       | event status bits                             |  |
| ICK        | 1                                           | start                  | s                     | S/C TT corresponding to mid-exposure          |  |
| 3LC<br>3TI | 2                                           | $\operatorname{stop}$  | $\mathbf{S}$          | S/C TT corresponding to mid-exposure          |  |
| _ ` `      |                                             |                        |                       |                                               |  |

Table A II 1. Contents of a level 1 event file

Table A II.2: Contents of a aspect/PCAD file  $% \mathcal{A}$ 

| block | #  | column         | unit                   | description                    |
|-------|----|----------------|------------------------|--------------------------------|
|       | 1  | time           | s                      | Time                           |
|       | 2  | ra             | $\operatorname{deg}$   | RA of MNC frame (x-axis)       |
|       | 3  | dec            | $\operatorname{deg}$   | DEC of MNC frame (x-axis)      |
|       | 4  | roll           | $\operatorname{deg}$   | ROLL of MNC frame              |
|       | 5  | ra_err         | $\operatorname{deg}$   | Uncertainty in RA              |
|       | 6  | $dec_{err}$    | $\operatorname{deg}$   | Uncertainty in DEC             |
|       | 7  | roll_err       | $\operatorname{deg}$   | Uncertainty in ROLL            |
| Ъ     | 8  | dy             | $\mathbf{m}\mathbf{m}$ | dY of STF frame - FC frame     |
| PSC   | 9  | dz             | $\mathbf{m}\mathbf{m}$ | dZ of STF frame - FC frame     |
| AS    | 10 | dtheta         | $\operatorname{deg}$   | dTHETA of STF frame - FC frame |
| X     | 11 | dy_err         | $\mathbf{m}\mathbf{m}$ | Uncertainty in dY              |
| LOC   | 12 | dz_err         | $\mathbf{m}\mathbf{m}$ | Uncertainty in dZ              |
| щ     | 13 | $dtheta_{err}$ | $\operatorname{deg}$   | Uncertainty in dTHETA          |
|       | 14 | $q_{att}[4]$   |                        | S/C attitude quaternion        |
|       | 15 | roll_bias      | deg/s                  | Roll bias rate                 |
|       | 16 | pitch_bias     | deg/s                  | Pitch bias rate                |
|       | 17 | yaw_bias       | deg/s                  | Yaw bias rate                  |
|       | 18 | roll_bias_err  | deg/s                  | Roll bias rate error           |
|       | 19 | pitch_bias_err | deg/s                  | Pitch bias rate error          |
|       | 20 | yaw_bias_err   | $\rm deg/s$            | Yaw bias rate error            |

Table A II.3: Contents of a parameter block file

| block | #  | column       | $\operatorname{unit}$ | description                                   |
|-------|----|--------------|-----------------------|-----------------------------------------------|
|       | 1  | ccd_id       |                       | CCD ID                                        |
|       | 2  | fep_id       |                       | Front End Processor ID                        |
|       | 3  | vidresp      |                       | CCD video chain response selection, 0 for 1:1 |
|       | 4  | $evt_thr[4]$ | adu                   | Event thresholds for nodes A-D (TLMIN=-4096)  |
| м     | 5  | $spl_thr[4]$ | adu                   | Split thresholds for output nodes A-D         |
| ΡB    | 6  | bcmpslot     |                       | Slot identifier for bias map compression tab  |
| CK    | 7  | biasalg      |                       | Bias algorithm is. 1:whole frame; 2:strip     |
| Ē.    | 8  | biasarg0     |                       | Bias argument 0 (TLMIN=-32768)                |
| щ     | 9  | biasarg1     |                       | Bias arguement 1 (TLMIN=-32768)               |
|       | 10 | biasarg2     |                       | Bias arguement 2 (TLMIN=-32768)               |
|       | 11 | biasarg3     |                       | Bias arguement 3 (TLMIN=-32768)               |
|       | 12 | biasarg4     |                       | Bias arguement 4 (TLMIN=-32768)               |
|       | 13 | vid_off[4]   |                       | Video offsets for CCD output nodes A-D        |
|       |    |              |                       |                                               |

Table AII.4: Contents of a bias file

| block      | # | column           | $\operatorname{unit}$ | description |
|------------|---|------------------|-----------------------|-------------|
| BLOCK BIAS | 1 | bias[1024, 1024] |                       |             |

#### Table A II.5: Contents of a filter file

| block      | # | $\operatorname{column}$ | $\operatorname{unit}$ | description                          |
|------------|---|-------------------------|-----------------------|--------------------------------------|
| DCK        | 1 | start                   | s                     | S/C TT corresponding to mid-exposure |
| BLC<br>GT1 | 2 | $\operatorname{stop}$   | $\mathbf{S}$          | S/C TT corresponding to mid-exposure |

Table A II.6: Contents of a mask file

| block | # | column               | unit  | description          |
|-------|---|----------------------|-------|----------------------|
|       | 1 | shape                |       | region shape         |
| u     | 2 | component            |       | Component index      |
| SK    | 3 | chip(chipx,chipy)[2] | pixel | CHIP position        |
| IAC   | 4 | samp_cyc             |       | sampling cycle       |
| ВЧ    | 5 | phamin               | adu   | minimum pulse height |
|       | 6 | phamax               | adu   | maximum pulse height |

Table AII.7: Contents of a bad pixel file

| block | # | column               | $\operatorname{unit}$ | description          |
|-------|---|----------------------|-----------------------|----------------------|
| Xn    | 1 | shape                |                       | region shape         |
| Id    | 2 | component            |                       | Component number     |
| BAD   | 3 | chip(chipx,chipy)[2] | pixel                 | CHIP location        |
| X     | 4 | time                 | $\mathbf{S}$          | Time pixel went bad  |
| DC C  | 5 | $time\_stop$         | $\mathbf{S}$          | Time pixel went bad  |
| BL    | 6 | status[4]            |                       | Badpixel status code |

### II.2 High level data files

High level data products are the ones obtained by the data reduction. They are finally used for scientific analysis. It is possible that they have to be reprocessed to apply a new calibration.

| block  | #  | column                 | unit                 | description                                   |  |  |
|--------|----|------------------------|----------------------|-----------------------------------------------|--|--|
|        | 1  | time                   | s                    | time tag of data record                       |  |  |
|        | 2  | expno                  |                      |                                               |  |  |
|        | 3  | $rd(tg_r,tg_d)$        | $\operatorname{deg}$ | Grating angular coords                        |  |  |
|        | 4  | chip(chipx, chipy)     | pixel                | Chip coords                                   |  |  |
|        | 5  | tdet(tdetx,tdety)      | pixel                | Tdet coords                                   |  |  |
|        | 6  | $\det(\det x, \det y)$ | pixel                | Det coords                                    |  |  |
|        | 7  | sky(x,y)               | pixel                | Sky coords                                    |  |  |
| 70     | 8  | ccd_id                 |                      |                                               |  |  |
| 3LN    | 9  | pha                    |                      |                                               |  |  |
| NE.    | 10 | pi                     |                      |                                               |  |  |
| ы<br>Х | 11 | energy                 |                      |                                               |  |  |
| OCI    | 12 | grade                  |                      |                                               |  |  |
| BL     | 13 | fltgrade               |                      |                                               |  |  |
|        | 14 | node_id                |                      |                                               |  |  |
|        | 15 | tg_m                   |                      | Diffraction order (m)                         |  |  |
|        | 16 | tg_lam                 | angstrom             | wavelength (lambda)                           |  |  |
|        | 17 | $tg_mlam$              | angstrom             | Order times wavelength (m * lambda)           |  |  |
|        | 18 | $tg\_srcid$            |                      | source ID, index from detect table            |  |  |
|        | 19 | $tg_part$              |                      | component index (HEG, MEG, LEG, HESF regions) |  |  |
|        | 20 | $tg\_smap$             |                      | source map; flags for up to 10 sources        |  |  |
|        | 21 | status[4]              |                      | event status bits                             |  |  |
|        | 1  | source                 |                      | Source Number                                 |  |  |
| NO     | 2  | shape                  |                      | Shape of the region                           |  |  |
| ID     | 3  | $_{ m sky(x,y)}$       | pixel                | Sky coords                                    |  |  |
| RE     | 4  | r[2]                   | pixel                | Radius Vector for SHAPE                       |  |  |
| CK     | 5  | rotang                 | $\operatorname{deg}$ | Rotation angle for SHAPE                      |  |  |
| ΓO     | 6  | grating                |                      | Applicable grating. hetg or letg              |  |  |
| щ      | 7  | $tg_part$              |                      | TG_PART                                       |  |  |
|        | 8  | component              |                      | Component number                              |  |  |

Table A II.8: Contents of a level 1.5-event file

| block      | # | column                | unit                     | description             |
|------------|---|-----------------------|--------------------------|-------------------------|
|            | 1 | time_bin              | channel                  | time tag of data record |
| ĽVE        | 2 | $time\_min$           | s                        | Minimum Value in Bin    |
| CUF        | 3 | time                  | $\mathbf{S}$             | time tag of data record |
| HT(        | 4 | time_max              | $\mathbf{S}$             | Maximum Value in Bin    |
| DI         | 5 | counts                | count                    | Counts                  |
| х<br>Г     | 6 | stat_err              | count                    | Statistical error       |
| OCI        | 7 | $count\_rate$         | $\operatorname{count/s}$ | Rate                    |
| BL         | 8 | $count\_rate\_err$    | $\operatorname{count/s}$ | Rate Error              |
|            | 9 | exposure              | s                        | Time per interval       |
| CK         | 1 | start                 | s                        | time tag of data record |
| BLO<br>GTI | 2 | $\operatorname{stop}$ | s                        | time tag of data record |

| Table A II. 10. Contents of a spectra (pliaz) me | Table AII.10: | Contents | of a | spectra | (pha2) | file |
|--------------------------------------------------|---------------|----------|------|---------|--------|------|
|--------------------------------------------------|---------------|----------|------|---------|--------|------|

| block  | #  | column                  | $\operatorname{unit}$  | description                                      |
|--------|----|-------------------------|------------------------|--------------------------------------------------|
|        | 1  | spec_num                |                        | Spectrum Number                                  |
|        | 2  | tg_m                    |                        | Diffraction order (m)                            |
|        | 3  | $tg_{-part}$            |                        | Spectral component (HEG, MEG, LEG, HESF parts)   |
| M      | 4  | $tg\_srcid$             |                        | Source ID, output by detect                      |
| TRI    | 5  | х                       | pixel                  | X sky coord of source                            |
| C<br>E | 6  | У                       | pixel                  | Y sky coord of source                            |
| SP     | 7  | channel[8192]           |                        | Vector of spectral bin numbers.                  |
| GK     | 8  | counts[8192]            | count                  | Counts array (a spectrum)                        |
| Ŭ<br>L | 9  | $stat_{err}[8192]$      | count                  | Statistical uncertainty (error) on counts column |
| Д      | 10 | $background_up[8192]$   | $\operatorname{count}$ | Background count vector                          |
|        | 11 | $background_down[8192]$ | count                  | Background count vector                          |
|        | 12 | bin_lo[8192]            | angstrom               | Bin boundary, left edge                          |
|        | 13 | bin_hi[8192]            | angstrom               | Bin boundary, right edge                         |
|        | 1  | spec_num                |                        | Spectrum number, which points to the row in the  |
|        | 2  | rowid                   |                        | Source or a background region?                   |
| NO     | 3  | shape                   |                        | Shape of region                                  |
| GI     | 4  | $wavpos(tg\_lam,tg\_d)$ |                        | Wavelength(angstrom), Cross Dispersion(degrees)  |
| RE     | 5  | r[2]                    | (angstrom, degrees)    | Radius vector for SHAPE                          |
| К      | 6  | rotang                  | degrees                | Rotation angle for SHAPE                         |
| Ū.     | 7  | $tg_part$               |                        | Grating part index (HEG=1, MEG=2, LEG=3)         |
| Д      | 8  | tg_srcid                |                        | Source identification number                     |
|        | 9  | tg_m                    |                        | Diffraction order                                |
|        | 10 | component               |                        | Component number                                 |

Table A II.11: Contents of a background (bkg2) file

| block  | #  | column         | $\operatorname{unit}$ | description                                    |
|--------|----|----------------|-----------------------|------------------------------------------------|
|        | 1  | spec_num       |                       | Spectrum Number                                |
| _      | 2  | tg_m           |                       | Diffraction order (m)                          |
| NU W   | 3  | $tg_part$      |                       | Spectral component (HEG, MEG, LEG, HESF parts) |
| CT     | 4  | tg_srcid       |                       | Source ID, output by detect                    |
| ΡE     | 5  | х              | pixel                 | X sky coord of source                          |
| S<br>S | 6  | у              | pixel                 | Y sky coord of source                          |
| Ċ      | 7  | channel[8192]  |                       | Vector of spectral bin numbers.                |
| BL     | 8  | $bin_lo[8192]$ | angstrom              | Bin boundary, left edge                        |
|        | 9  | bin_hi[8192]   | angstrom              | Bin boundary, right edge                       |
|        | 10 | counts[8192]   |                       | User defined column                            |

Table A II.12: Contents of a grating redistribution matrix function (gRMF) file

| block | # | $\operatorname{column}$ | unit           | description |
|-------|---|-------------------------|----------------|-------------|
| LX    | 1 | energ_lo                | $\mathrm{keV}$ |             |
| TR.   | 2 | energ_hi                | $\mathrm{keV}$ |             |
| MA'   | 3 | n_grp                   |                |             |
| X     | 4 | f_chan                  |                |             |
| ĽĎ    | 5 | n_chan                  |                |             |
| B     | 6 | matrix[103]             |                |             |
|       | 1 | channel                 | channel        |             |
| N     | 2 | e_min                   | $\mathrm{keV}$ |             |
| XND   | 3 | e_max                   | $\mathrm{keV}$ |             |
| BOL   |   |                         |                |             |
| 回日    |   |                         |                |             |

Table A II.13: Contents of a grating ancillary response function (gARF) file

| block | # | $\operatorname{column}$ | unit           | description    |
|-------|---|-------------------------|----------------|----------------|
| SP    | 1 | energ_lo                | $\mathrm{keV}$ | Energy         |
| CRE   | 2 | energ_hi                | $\mathrm{keV}$ | Energy         |
| PEO   | 3 | specresp                | $cm^{**2}$     | Effective Area |
| ίΩ.   | 4 | bin_lo                  | angstrom       |                |
| JCK   | 5 | bin_hi                  | angstrom       |                |
| BLC   | 6 | fracexpo                |                |                |

#### III The Chandra observation # 3814

The analysis of the *Chandra* observation # 3814 was the main achievement of this thesis. It was discussed in great detail in chapter 4. This appendix contains completing plots and detailed tables, which were removed from the main part to keep the overview on the main procedures.

#### III.1 Flux-ratios of the sub-spectra

The consistency of the 'non-dip' sub-spectra with the whole 'non-dip' spectrum was investigated in Section 4.2.1 (page 57). Figs. A III.1 and A III.2 show the flux-ratios of the 'non-dip 1' and the 'non-dip 3' sub-spectra to the average 'non-dip' spectrum. (The same is not shown explicitly for the 'non-dip 2' spectrum again, which is complementary to the 'non-dip 1' and 'non-dip 3' spectra regarding the ratio to the total 'non-dip' spectrum. As there are almost no deviations, it is clear that the 'non-dip 2' spectrum would show the same behavior.)

Colors were used to visualize the consistency of the flux atio with 1: The gray lines show bins, where the value 1 is in the middle third of the error bar  $(|r - 1| \leq \Delta r/3)$ , red indicates positive deviations, blue negative deviations. Darker colors are used when the ratio is not consistent with 1 at all  $(|r - 1| > \Delta r)$ . Each plot shows in its first 4 panels the individual ratios of the MEG±1 and HEG±1 spectra, while the last panel shows the average.

The same analysis was repeated for the 'dip' sub-spectra with respect to the whole 'dip' spectrum, as described in Section 4.3.1 (page 88): Figs. A III.3 – A III.5 show the analogous flux-ratios of the 'dip 1', 'dip 2' and 'dip 3' sub-spectra to the 'dip' spectrum. The trend that 'dip 1' is less strongly absorbed than the average 'dip', while 'dip 2' is more absorbed, can also be directly seen from the flux-corrected spectra themselves (Fig. 4.16).

#### III.2 Spectral analysis of the 'non-dip' spectrum

The detailed results for the description of lines in the 'non-dip' spectrum (Sect. 4.2.3) are shown on the following pages:

Table 4.10 (Sect. 4.2.3, page 73) gave the fit-parameters of all trustably identified lines. Table A III.1, which starts on page 129, however, lists the parameters of all the lines included to describe the spectrum. (It was stated that many of the (unidentified) lines might not be real, but just describe calibration uncertainties or statistical fluctuation.) The parameters are – as in Table 4.10: their position, full width at half maximum (with colored background if the confidence interval or even the width itself did not converge properly), equivalent width, improvement on the  $\chi^2$ -statistics (cf. comments to Table 4.4, page 61) and possible identifications (gray backgrounds mark emission lines): ion, electronic states of the transition (where ground states are underlined), theoretical wavelength (from CXC's atomic database ATOMDB 1.3.1) and Einstein coefficient as a measure for the expected strength of the lines. Identifications (which is, however due to Doppler shifts, no reason that the identification is not correct). Trustable identifications (cf. Sect. 4.2.3) are marked by  $\leftarrow$  arrows.

The plots following this long list of lines (Fig. A III.6a-A III.6h, on pages 137-144) show the spectrum with all fitted lines in each 2 Å-wavelength-intervals. The upper panel shows the residuals  $\Delta \chi$  of the continuum, i.e., before including the fitted lines in the model. Then, the combined count rates of each the MEG±1 and HEG±1 spectra are shown. This is only for clearer visualization; all spectra have been fitted independently (though simultaneously). Trusted line identifications are labeled.

#### **III.3** Dependencies of the continuum-parameters

The next section starts at page 145.



Figure A III.1: Ratio of 'non-dip 1' and 'non-dip' flux-spectrum.



Figure A III.2: Ratio of 'non-dip 3' and 'non-dip' flux-spectrum.



Figure A III.3: Ratio of 'dip 1' and 'dip' flux-spectrum.



Figure A III.4: Ratio of 'dip 2' and 'dip' flux-spectrum.



Fluxratio 'dip3' : 'dip'

Figure A III.5: Ratio of 'dip 3' and 'dip' flux-spectrum.

| Table AIII.1: List of lines in the 'non-dip' spectrum – sorted by wavelength |               |                 |                 |                     |               |
|------------------------------------------------------------------------------|---------------|-----------------|-----------------|---------------------|---------------|
|                                                                              | Table AIII.1: | List of lines i | in the 'non-dip | ' spectrum – sorted | by wavelength |

| $\lambda$ FW                                                                                                     | HM EW 2                               | $\chi^2$    | ion transi                 | ition $\lambda_0$ A                   | $A_{ji} \mid \Delta \lambda$ | $/\lambda \cdot c$            |                                     |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|----------------------------|---------------------------------------|------------------------------|-------------------------------|-------------------------------------|
| [Å] [mÅ                                                                                                          | Á] [mÅ]                               |             | $i \ j$                    | $[Å]10^{12}s^{-1}$                    | [-1] []                      | km/s]                         | 1700                                |
| $1.2146^{+0.0070}_{-0.0070}$ $27.92^{+2.50}_{-15.81}$                                                            | $-19.84^{+8.25}_{-7.53}$              | 0.0         | ( Ni XXVIII                | $\underline{1s}$ $4p$                 | 1.2268                       | $41.2 \rightarrow ($          | $-2984^{+1722}_{-1711}$             |
|                                                                                                                  |                                       | 10.0        | ( Ni XXVIII                | <u>1s</u> 4p                          | 1.2272                       | 41.2)                         | $-3089^{+1721}_{-1710}$             |
| $\frac{1.4475_{-0.0031}  0.11_{-0.11}}{1.4670^{\pm0.0030}  1.70^{\pm11.14}}$                                     | $-4.50^{+1.00}_{-3.90}$               | 19.3        | ( Fe XXV                   | $1s^2$ 1s5p                           | 1.4610                       | 28.3 )                        | $-2777_{-640}$                      |
| $\frac{1.4670_{-0.0028}^{+0.0028} - 1.78_{-1.78}^{+1.178}}{1.4014_{-0.0026}^{+0.0066} - 0.79_{-23.63}^{+23.63}}$ | $-4.43^{+1.00}_{-2.07}$               | 19.9        | ( Fe XXV                   | $\frac{1s^2}{2}$ 1s5p                 | 1.4610                       | 28.3)                         | $\frac{1238_{-566}}{719^{\pm1317}}$ |
| $1.4914_{-0.0041}  0.72_{-0.72}$                                                                                 | $-2.51_{-2.28}$                       | 6.5         | Fe XXV                     | $1s^2$ 1s4p                           | 1.4950                       | $50.3 \leftarrow$             | $-713_{-817}$                       |
| $1.5180^{+0.0028}_{-0.0027}$ $0.18^{+10.71}_{-0.18}$                                                             | $-3.54^{+1.49}_{-1.49}$               | 14.7        | ( NI XXVIII<br>( Ni XXVIII | $\frac{1s}{1}$ $2p$                   | 1.5304<br>1.5356             | $379 \rightarrow -$           | $-2422_{-535}$<br>$3428^{+553}$     |
| $15526^{+0.0033}$ 0 33 $^{+11.99}$                                                                               | $3.02^{+1.48}$                        | 10.0        | (Fo XXV                    | $\frac{1s}{1-2}$ $\frac{2p}{1-2-}$    | 1.5550                       | $\frac{378}{137}$             | $-3420_{-533}$<br>3012 $+635$       |
| $\frac{1.3320_{-0.0025} + 0.33_{-0.33}}{1.8400^{+0.0029} + 5.42^{+14.13}}$                                       | $\frac{-3.02 - 1.58}{2.11 + 0.90}$    | 18.6        | Fo XXV                     | $1s^2$ $1s3p$                         | 1.8504                       | $503 \leftarrow$              | $\frac{-3912-486}{87^{+478}}$       |
| $\frac{1.0499_{-0.0038} - 0.42_{-5.42}}{1.0305^{+0.0021} - 11.51^{+6.13}}$                                       | $\frac{-2.11-1.25}{5.00^{\pm 1.24}}$  | 58.8        | ( Fo                       | <u>Is</u> Is2p<br>Ko                  | 1.037(                       | $\rightarrow$ $100$           | $\frac{-67}{-622}$                  |
| $\frac{1.9395_{-0.0020}  11.01_{-5.28}}{1.9678^{+0.0086}  0.04^{+25.29}}$                                        | $\frac{0.00_{-1.18}}{0.93^{+0.86}}$   | 3.8         | ( re                       | Κα                                    | 1.901                        | → (                           | 303-316                             |
| $\frac{1.0076_{-0.0043} + 0.04_{-0.04}}{1.0022^{+0.0051} + 13.69^{+15.92}}$                                      | $\frac{0.33_{-0.82}}{2.28^{\pm1.13}}$ | 13.0        |                            |                                       |                              |                               |                                     |
| $\frac{1.0022_{-0.0046} + 10.00_{-13.69}}{2.0328^{+0.0022} + 0.00^{+16.47}}$                                     | $\frac{2.20 - 1.22}{1.77 + 0.87}$     | 13.1        |                            |                                       |                              |                               |                                     |
| $\frac{2.0026_{-0.0028} + 0.00_{-0.00}}{2.2900^{+0.0026} + 0.01^{+5.73}}$                                        | $\frac{1.11 - 0.83}{1.81 + 0.80}$     | 16.0        |                            |                                       |                              |                               |                                     |
| $\frac{2.2300_{-0.0001} \ 0.01_{-0.01}}{2.3204^{+0.0200} \ 10.07^{+65.36}}$                                      | $\frac{1.01-0.76}{1.10^{+2.13}}$      | 5.4         |                            |                                       |                              |                               |                                     |
| $\frac{2.3261_{-0.0090} + 10.01_{-10.07}}{2.3476^{+0.0025} + 0.02^{+74.98}}$                                     | $\frac{1.10 - 0.82}{1.48 + 0.77}$     | 12.1        |                            |                                       |                              |                               |                                     |
| $\frac{2.0110_{-0.0026} + 0.02_{-0.02}}{2.4407^{+0.0206} + 0.12^{+74.88}}$                                       | $\frac{1.10_{-0.72}}{0.82^{+0.71}}$   | 4.3         |                            |                                       |                              |                               |                                     |
| $\frac{2.1107_{-0.0035} - 0.12_{-0.12}}{2.4618_{-0.0099} - 15.24_{-59.76}}$                                      | $1.47^{+1.53}$                        | 8.4         |                            |                                       |                              |                               |                                     |
| $\frac{2.1010 \pm 0.0107}{2.6944 \pm 0.0065} \times 13.48 \pm 61.94$                                             | $\frac{1.11 - 0.94}{1.32^{+1.96}}$    | 79          | ( Ca XIX                   | $1s^2$ $1s^{3n}$                      | 2 705(                       | 46.3                          | $-1171^{+723}$                      |
| $\frac{2.0011_{-0.0200} + 10.10_{-13.48}}{2.7000^{+0.0025} + 0.00^{+24.05}}$                                     | $-1.64^{+0.53}$                       | 23.9        | ( Ca XIX                   | $1s^2$ $1s3p$                         | 2.7050                       | $46.3 \rightarrow \leftarrow$ | $\frac{-1111-2217}{-554+277}$       |
|                                                                                                                  | 1.01_0.50                             | 20.0        | Ar XVIII                   | <u>1s</u> 130p                        | 2.9873                       | $7.04 \leftarrow$             | $-974^{+2389}$                      |
| $2.9776_{-0.0162}^{+0.0238}  0.01_{-0.01}^{+49.99}$                                                              | $-0.53^{+0.53}_{-0.55}$               | 2.6         | Ar XVIII                   | $\frac{13}{1s}$ $\frac{4p}{4p}$       | 2.9878                       | 7.03                          | $-1017^{+2389}_{-1025}$             |
| +0 0175 +74 99                                                                                                   | +0 56                                 |             | Ca xx                      | <u> </u>                              | 3.0185                       | 98.6 ←                        | $\frac{155^{+1734}}{155^{+1734}}$   |
| $3.0201^{+0.0173}_{-0.0026}$ $0.01^{+74.99}_{-0.01}$                                                             | $-0.60^{+0.36}_{-0.54}$               | 3.1         | Ca xx                      | $\frac{1}{1s}$ $\frac{1}{2p}$         | 3.0239                       | 98.5                          | $-383^{+1731}_{-257}$               |
| $3.0748^{+0.0002}_{-0.0048}$ $0.00^{+8.77}_{-0.00}$                                                              | $-0.85^{+0.56}_{-0.53}$               | 6.1         | ( Ar XVII                  | $\frac{1}{1s^2} \frac{1}{1s5p}$       | 3.1280                       | 6.20)                         | $-5101^{+23}_{-458}$                |
| -0.0048 $-0.00$                                                                                                  | -0.33                                 |             | Ar XVIII                   | 1s 3p                                 | 3.1502                       |                               | -438<br>$-713^{+2023}_{-1784}$      |
| $3.1427_{-0.0187}^{+0.0216}  0.16_{-0.16}^{+0.017}$                                                              | $-0.44^{+0.44}_{-0.54}$               | 1.4         | Ar xviii                   | <u>1s</u> 3p                          | 3.1514                       | 17.2                          | $-822_{-1783}^{+2022}$              |
| $3.1878^{+0.0163}_{-0.0306}$ $0.00^{+50.42}_{-0.00}$                                                             | $-0.55^{+0.55}_{-0.56}$               | 2.2         | Ca xix                     | $1s^2$ $1s2p$                         | 3.1772                       | $170 \leftarrow$              | $1001^{+1538}_{-2892}$              |
| -0.0300 -0.00                                                                                                    | -0.30                                 |             | (Ca VIV                    | <u> </u>                              | 3 180 (                      | $) 001 ) \leftarrow$          | 484+306                             |
| $3.1942^{+0.0033}_{-0.0018}$ $0.00^{+17.52}_{-0.00}$                                                             | $1.01\substack{+0.71\\-0.68}$         | 6.2         | Ca XIX                     | $\frac{15}{1s^2}$ $\frac{1s2p}{1s2n}$ | 3.192'                       | 4.85                          | $141^{+306}_{-165}$                 |
| $3.2075^{+0.0025}$ $0.00^{+27.57}$                                                                               | $-0.93^{+0.51}$                       | 8.0         | ( Ar XVII                  | $1s^2$ $1s4p$                         | 3.2000                       | $12.3 \rightarrow \leftarrow$ | $\frac{111-164}{702+235}$           |
| $\frac{3.3667^{+0.0158}}{3.3667^{+0.0158}}, 0.00^{+0.00}$                                                        | $-0.60^{+0.59}$                       | 2.8         | Ar XVII                    | $1s^2$ $1s3p$                         | 3.3650                       | $30.0 \leftarrow$             | $\frac{154^{+1405}}{154^{+1405}}$   |
| = = +0.0202                                                                                                      | 0.37                                  | -           | S XVI                      | 1s 5p                                 | 3.6958                       | $2.22 \leftarrow$             | $\frac{-599}{355+1637}$             |
| $3.7002_{-0.0202}^{+0.0202}$ $0.00_{-0.00}^{+0.00}$                                                              | $-0.41^{+0.41}_{-0.59}$               | 1.2         | S XVI                      | 1s 5p                                 | 3.6960                       | 2.21                          | $337^{+1637}_{-1637}$               |
| 2 7200+0.0211 12 00+37.12                                                                                        | 0.04+0.79                             | 4.0         | Ar xviii                   | <u>1s</u> 2p                          | 3.7311                       | $64.7 \leftarrow$             | $-179_{-831}^{+1697}$               |
| $3.7289_{-0.0103}$ 12.88 <sub>-12.88</sub>                                                                       | $-0.94_{-1.63}$                       | 4.0         | Ar xviii                   | 1s 2p                                 | 3.7365                       | 64.6                          | $-614^{+1694}_{-830}$               |
| $2.7901 \pm 0.0061$ 0.04 \pm 49.96                                                                               | $0.64 \pm 0.58$                       | 2.2         | S XVI                      | 1s 4p                                 | 3.7843                       | $4.40 \leftarrow$             | $-336^{+486}_{-404}$                |
| $5.7801_{-0.0051}$ $0.04_{-0.04}$                                                                                | $-0.04_{-0.83}$                       | 3.3         | S XVI                      | $\underline{1s}$ $4p$                 | 3.7848                       | 4.39                          | $-370^{+486}_{-404}$                |
| $3.9250^{+0.0041}_{-0.0040}$ $8.53^{+11.89}_{-8.53}$                                                             | $-1.54_{-0.82}^{+0.73}$               | 13.0        |                            |                                       |                              |                               |                                     |
| $3.9475^{+0.0026}_{-0.0026}$ $0.03^{+18.90}_{-0.03}$                                                             | $-1.11^{+0.54}_{-0.57}$               | 9.1         | Ar xvii                    | $\underline{1s^2}$ $1s2p$             | 3.9491                       | $109 \leftarrow$              | $-118^{+194}_{-201}$                |
| $3.9860^{+0.0214}$ $37.50^{+37.50}$                                                                              | $-1.73^{+1.43}$                       | 5.9         | S XVI                      | $\underline{1s}$ $3p$                 | 3.9908                       | 10.8 <i>\</i>                 | $-363^{+1605}_{-1360}$              |
| 3.3000_0.0181                                                                                                    | 0 -1.10-1.49                          | 0.5         | S XVI                      | $\underline{1s}$ $3p$                 | 3.9920                       | 10.8                          | $-449^{+1604}_{-1359}$              |
| $4.0984_{-0.0093}^{+0.0088}  20.58_{-20.58}^{+31.95}$                                                            | $-1.88^{+1.18}_{-1.24}$               | 9.1         | (Sxv                       | $1s^2$ 1s4p                           | 4.0883                       | 7.53 ) <i>←</i>               | $-738^{+648}_{-682}$                |
| $\frac{4.3019^{+0.0211}_{-0.0211}}{74.98^{+0.44}_{-64.42}}$                                                      | $-3.88^{+2.47}_{-1.82}$               | 12.4        | S xv                       | $1s^2$ 1s3p                           | 4.2990                       | 18.3 ↔                        | $-204^{+1468}_{-1468}$              |
| $\frac{4.3876^{+0.0049}_{-0.0048}  0.14^{+16.57}_{-0.14}}{}_{-0.14}$                                             | $-1.09^{+0.68}_{-0.84}$               | 6.3         | S xv                       | $1s^22p$ (autoion                     | .) 4.3910                    |                               | $-235^{+337}_{-330}$                |
| $4.4150^{+0.0075}_{-0.0075}$ $0.00^{+75.00}_{-0.00}$                                                             | $-0.66^{+0.66}_{-0.71}$               | 2.7         | S xv                       | $1s^2 2p$ (autoion                    | 1.) 4.4149                   |                               | $8^{+511}_{-511}$                   |
| $4.7285^{+0.0015}_{-0.0017}$ $7.78^{+9.06}_{-5.76}$                                                              | $-4.13^{+0.92}_{-1.10}$               | 93.6        | S XVI                      | $\underline{1s}$ $2p$                 | 4.7274                       | 40.4 ↔                        | $- 71^{+93}_{-109}$                 |
| -0.0017                                                                                                          | -1.18                                 | -           | ( S XVI                    | 1s $2p$                               | 4.7328                       | 40.3)                         | $-272^{+35}_{-109}$                 |
| $4.9518^{+0.0032}_{-0.0018}$ $0.01^{+13.26}_{-0.01}$                                                             | $-1.42^{+0.69}_{-0.73}$               | 11.2        | (Si XIV                    | 1s $4p$                               | 4.9468                       | 2.58 ) ←                      | $-305^{+130}_{-112}$                |
| <u> </u>                                                                                                         | 2 00+0.91                             | <u>co 7</u> | ( Si XIV                   | <u>1s</u> 4p                          | 4.9472                       | 2.57)                         | $279^{+100}_{-112}$                 |
| $5.0397_{-0.0020}$ $9.26_{-5.73}$                                                                                | $-3.80^{+0.01}_{-1.05}$               | 02.7        | S XV                       | <u>1s</u> 1s2p                        | 5.0387                       | → 1.00                        | $ 01_{-121}$<br>149+1447            |
| $5.0656^{+0.0244}_{-0.0156}$ $5.27^{+44.73}_{-5.27}$                                                             | $0.77^{+0.93}_{-0.77}$                | 2.2         | S XV<br>S XV               | $\frac{1s^2}{1s^2}$ 1s2p              | 5.066                        | - 0.000 ↔<br>0.50             | $-143_{-921}_{55^{+1446}}$          |
| F 1004+0.0196 0 00+49 78                                                                                         | $0.24 \pm 0.84$                       | 0.0         | C                          | <u>15</u> 1 <i>s</i> 2 <i>p</i>       | 5.000                        | 0.000                         | -00-921<br>C 4+1151                 |
| $5.1004_{-0.0204}^{+0.0100}$ $0.22_{-0.22}^{+49.10}$                                                             | $0.34_{-0.34}$                        | 0.6         | SXV                        | $1s^2$ 1s2s                           | 5.101                        | → 0.000 ↔                     | 64_1199                             |
| $5.2193^{+0.0077}_{-0.0040}$ 22.15 <sup>+20.59</sup>                                                             | $-4.03^{+1.41}_{-1.010}$              | 33.5        | Si XIV                     | 1s $3p$                               | 5.2168                       | 6.32 ↔                        | $-145^{+444}_{-274}$                |
| 0.0048 $11.94$                                                                                                   |                                       |             | Si XIV                     | $\underline{1s}$ $3p$                 | 5.2180                       | 6.31                          | $79_{-274}^{+444}$                  |
| $\frac{5.3750^{+0.0030}_{-0.0050}  0.00^{+37.24}_{-0.00}}{5.4000^{\pm0.0043}_{-0.00}  0.00^{\pm37.24}_{-0.00}}$  | $-1.42^{+0.84}_{-0.76}$               | 6.9         |                            | 2                                     | F 10.1-                      | 1.00                          | 00-1937                             |
| $5.4033_{-0.0008}^{+3.0046}$ $0.01_{-0.01}^{+23.34}$                                                             | $-1.42^{+0.17}_{-1.05}$               | 8.7         | Si XIII                    | $1s^2$ 1s4p                           | 5.4045                       | 4.30 +                        | $-68_{-45}^{+237}$                  |
| $5.5306^{+0.0044}_{-0.0007}$ $0.01^{+13.42}_{-0.01}$                                                             | $-1.44^{+0.80}_{-0.78}$               | 8.5         | (Si XIII                   | $\frac{1s^2 2s}{2s}$ (autoion         | b.5424                       | )                             | $-636^{+237}_{-38}$                 |
| 5.000. 0.01                                                                                                      | 0.10                                  |             | ( SI XIII                  | <u>1s<sup>-</sup>2s</u> (autoion      | i.) <b>5.5425</b>            | )                             | -041_38                             |

|                                             | $\lambda_{i}$                    | FWHI            | M EW                                 | $\Delta \chi^2$    | ior | n transiti        | on $\lambda_0$                               | $A_{ji}$                           | $\Delta\lambda/\lambda\cdot c$ | :                   |              |                                 |
|---------------------------------------------|----------------------------------|-----------------|--------------------------------------|--------------------|-----|-------------------|----------------------------------------------|------------------------------------|--------------------------------|---------------------|--------------|---------------------------------|
|                                             | [Å]                              | [mÅ]            | [mÅ]                                 |                    |     | i j               | [Å]]10                                       | $^{12}s^{-1}$ ]                    | $[\rm km/s]$                   |                     |              |                                 |
| $5.5750^{+0.0050}_{-0.0025}$                | $0.00^{+41}$                     | .16             | $-1.41^{+0.68}_{-7.4}$               | 10.7               | (   | Si XIII           | $1s^{2}2p$                                   | (autoion.)                         | 5.5618                         | )                   |              | $713^{+268}_{-137}$             |
| = 0.0025                                    |                                  | 4 30            |                                      |                    | (   | Si XIII           | $1s^22p$                                     | (autoion.)                         | 5.5627                         | )                   |              | $\frac{665^{+208}_{-137}}{195}$ |
| $5.6809^{+0.0037}_{-0.0036}$                | $22.02^{+1}_{-1}$                | 10.29           | $-4.64^{+1.29}_{-1.47}$              | 58.5               |     | Si XIII           | $\frac{1s^2}{2}$                             | 1 <i>s</i> 3 <i>p</i>              | 5.6805                         | 10.4                | <u>←</u>     | $23^{+195}_{-190}$              |
| $5.8572^{+0.0003}_{-0.0047}$                | $0.00^{+26}_{-0.0}$              | .23             | $-1.11^{+0.63}_{-0.63}$              | 8.0                |     | Ni XXV            | $\frac{1s^2 2s^2}{2s^2}$                     | $1s^2 2s7p$                        | 5.8598                         | (0.19)              |              | $-133^{+13}_{-243}$             |
| 0.0041                                      | 0.0                              | 00              | 0.00                                 | ,                  | (   | N1 XXV            | $1s^22s^2$                                   | $1s^{2}2s7p$                       | 5.8584                         | 1.25 )              |              | $-60_{-243}$                    |
| $6.0602^{+0.0121}_{-0.0093}$                | $14.48^{+}_{-}$                  | $5.52 \\ 14.48$ | $-1.28^{+0.87}_{-1.05}$              | 7.0                |     |                   | <u>1s</u>                                    | 3p                                 | 0.0520<br>6.0527               | 4.70                | $\leftarrow$ | $370_{-459}$<br>$201^{+598}$    |
|                                             |                                  |                 |                                      |                    |     | AI XIII<br>Si VIV | <u>1s</u>                                    | 3p                                 | 6 1804                         | 4.09                |              | $\frac{521_{-459}}{20^{+25}}$   |
| $6.1810^{+0.0005}_{-0.0009}$                | $13.80^{+2}_{-1}$                | 2.31<br>1.75    | $-10.31^{+0.7}_{-0.8}$               | $^{78}_{85}$ 888.9 | 6   | Si xiv            | <u>1s</u>                                    | 2p<br>2n                           | 6 1858                         | 23.1<br>23.6 )      |              | $-233^{+25}$                    |
| a a1 50±0 0150                              | $a a a \pm 5$                    | 0.00            | 0.07+0.37                            | 1.0                |     | A1                | 15                                           | 2p                                 | 0.1000                         | 20.0 )              |              | $-200_{-42}$                    |
| $6.3150_{-0.0050}$                          | $0.00^{+0}_{-0}$                 | .00             | -0.37 -0.65                          | 5 1.3              |     | AI XII            | $\frac{1s^2}{2}$                             | 1s4p                               | 6.3140                         | 3.14                | <i>←</i>     | 48_238                          |
| $6.6346^{+0.0045}_{-0.0024}$                | $0.88^{+10}_{-0.8}$              | 88<br>88        | $-1.81^{+1.10}_{-2.12}$              | 0.0                |     | Al XII            | $\underline{1s^2}$                           | 1s3p                               | 6.6350                         | 7.63                | $\leftarrow$ | $-18^{+201}_{-109}$             |
| $6.6468^{+0.0009}_{-0.0010}$                | $9.50^{+2.3}_{-2.2}$             | 18              | $-6.62^{+1.01}_{-1.07}$              | , 215.5            | (   | Si XIII           | $1s^2$                                       | 1s2p                               | 6.6479                         | 37.7 )              | ←            | $-51^{+42}_{-44}$               |
| a <b>=</b> 0.01±0.0036                      | 1004+1                           | 6.40            | o o <b>=</b> ±1.57                   | ,                  |     | Ni XXIV           | $\frac{1s^2 2s^2 2p}{2}$                     | $1s^2 2s 2p 5p$                    | 6.7029                         | 0.17                |              | $9^{+101}_{-181}$               |
| $6.7031_{-0.0040}$                          | $18.94_{-1}$                     | 2.14            | $-3.67^{+1.01}_{-1.30}$              | 45.4               |     | Si XIII           | $\frac{1s^2}{2}$                             | 1s2p                               | 6.6850<br>C C 2990             | 0.000 )             |              | $810_{-181}^{+101}$             |
| 6 7002+0.0033                               | 14 20+1                          | 0.73            | $2.06 \pm 0.95$                      | 27.0               | (   | SI XIII           | <u>1s<sup>2</sup></u>                        | 1s2p                               | 0.0882<br>6 7100               | $\frac{0.10}{2.11}$ |              | $\frac{000_{-181}}{149^{+146}}$ |
| $\frac{0.7223_{-0.0034}}{6.7445^{+0.0023}}$ | $\frac{14.39_{-6}}{7.50^{+6.3}}$ | 3.92<br>33      | $\frac{-2.90}{0.77^{\pm 0.94}}$      | - 37.2<br>- 26.1   | (   | S: VIII           | $\frac{1s^2 2s^2 2p}{1}$                     | 1s <sup>2</sup> 2s <sup>2</sup> 6d | 6.7190                         | 2.11                |              | $\frac{148_{-151}}{180^{+102}}$ |
| $0.7443_{-0.0019}$                          | 1.50_7.5                         | 50              | 2.11_0.85                            | 30.1               |     | Ni XVIV           | $\frac{1s^2}{1s^2}$                          | 1s2s                               | 6 750                          | 2.86                | -            | $\frac{109_{-86}}{05^{+182}}$   |
| $6.7613^{+0.0041}_{-0.0047}$                | $6.57^{+15}_{-6.8}$              | .96<br>57       | $1.35_{-0.72}^{+0.89}$               | 9.9                |     | Ni XXIV           | $1s^{-}2s^{-}2p^{-}$<br>$1s^{2}2s^{-}2p^{2}$ | $1s^2 2s 2p 6d$                    | 6 759                          | 1.58                |              | $64^{+182}$                     |
|                                             |                                  |                 |                                      |                    |     | Ni XXV            | 1s 2s2p<br>$1s^22n^2$                        | $1s^2 2s2p0a$<br>$1s^2 2s5d$       | 6 7796                         | 3.87                |              | $\frac{04_{-210}}{19^{+108}}$   |
| 10,0094                                     | 1.1.4                            | 27              | 10.20                                |                    | (   | Fe xxv            | 15 2p                                        | 15 2pou<br>1s5n                    | 6.7880                         | 1.98)               |              | $-353^{+107}$                   |
| $6.7800^{+0.0024}_{-0.0021}$                | $0.03^{+14}_{-0.0}$              | 03              | $-1.66^{+0.39}_{-0.66}$              | 28.7               | ì   | Fe xxv            | 1s2s                                         | 185p                               | 6.7880                         | 1.95 )              |              | $-353^{+107}_{-35}$             |
|                                             |                                  |                 |                                      |                    | Ì   | Fe xxv            | 1s2s                                         | 1s5p                               | 6.7880                         | 1.94)               |              | $-353^{+107}_{05}$              |
|                                             | 15 (                             | °0              | 10.42                                | ,                  |     | Mg XII            | 1s                                           | 3p                                 | 7.1058                         | 3.41                | ←            | $-33^{+105}$                    |
| $7.1050^{+0.0023}_{-0.0000}$                | $0.01^{+5.0}_{-0.0}$             | 01              | $-2.31^{+0.43}_{-0.72}$              | 49.6               |     | Mg XII            | 1s                                           | 3p                                 | 7.1069                         | 3.41                |              | $-81^{+105}$                    |
| - t co-+0 0027                              | $a a t \pm 7$                    | 80              | $2.24\pm0.79$                        |                    |     | Al XIII           | 1s                                           | 2p                                 | 7.1710                         | 17.6                | ←            | $-98^{+113}_{-98}$              |
| $7.1687^{+0.0027}_{-0.0020}$                | $9.91^{+1.0}_{-9.9}$             | 90              | $-3.04^{+0.19}_{-0.99}$              | 46.2               | (   | Al XIII           | 1s                                           | 2p                                 | 7.1764                         | 17.6)               |              | $-323^{+113}$                   |
| $7.2777^{+0.0116}_{-0.0077}$                | $20.00^{+3}$                     | 32.33           | $2.06^{+1.48}_{-1.20}$               | 11.6               |     | Ni XXIV           | $1s^2 2s 2p^2$                               | $1s^22s2p5d$                       | 7.278                          | 6.10                |              | $-46^{+479}_{-415}$             |
| $\frac{-0.0017}{7.3168 + 0.0200}$           | $6.36^{+43}_{-6}$                | .64<br>36       | $\frac{-1.29}{1.17^{+1.94}_{-0.82}}$ | 6.0                |     | Mg XI             | $1s^2$                                       | 1s5p                               | 7.310                          | 1.13                |              | $274_{-603}^{+820}$             |
| 7 2505±0.0050                               | 0.00+75                          | .00             | 1.00+0.84                            | 6.0                |     | Ni xxv            | $\frac{1}{1s^2 2p^2}$                        | $1s^22p4d$                         | $7.345_{-}$                    | 9.01                |              | $289^{+204}_{-306}$             |
| $7.3525_{-0.0075}$                          | $0.00^{+10}_{-0.0}$              | 00              | $1.02_{-0.67}^{+0.01}$               | 6.2                | (   | Ni xxv            | $1s^22p^2$                                   | $1s^22p4d$                         | 7.359                          | 8.55)               |              | $-269^{+204}_{-305}$            |
| 7 4774+0.0001                               | $0.00^{+11}$                     | .26             | $1.00 \pm 0.56$                      | 010                |     | Mg XI             | $1s^2$                                       | 1s4p                               | 7.4730                         | 2.24                | $\leftarrow$ | $175^{+5}_{-196}$               |
| 1.4/14_0.0049                               | $0.00^{+}_{-0.0}$                | 00              | $-1.80_{-0.52}$                      | 2 24.9             | (   | Fe XXIII          | $1s^22s^2$                                   | $1s^22s5p$                         | 7.4780                         | 2.51 )              |              | $-25^{+5}_{-195}$               |
|                                             |                                  |                 |                                      |                    |     | Ni XXIII          | $1s^2 2s 2p^3$                               | $1s^2 2s 2p 2p 5$                  | 7.6250                         | 0.85                |              | $-43^{+168}_{-408}$             |
| $7.6245^{+0.0043}_{-0.0104}$                | $14.77^{+3}_{-1}$                | $35.42 \\ 1.65$ | $2.69^{+1.82}_{-1.03}$               | 22.9               |     | Ni XXIII          | $1s^22s2p^3$                                 | $1s^22s2p2p5$                      | 7.628:                         | 1.61                |              | $-148^{+168}_{-408}$            |
|                                             |                                  |                 |                                      |                    | (   | Ni XXI            | $2s^2 2p^4$                                  | $2s2p^22p^25p$                     | 7.629                          | 0.97)               |              | $-210^{+168}_{-408}$            |
| $7.7532^{+0.0056}_{-0.0090}$                | $0.41^{+34}_{-0.4}$              | .00<br>41       | $-1.09^{+0.75}_{-1.49}$              | 5.6                |     | Al XII            | $\underline{1s^2}$                           | 1s2p                               | 7.7573                         | 27.5                | ←            | $-158^{+217}_{-347}$            |
| $7.7676^{+0.0049}_{-0.0026}$                | $0.00^{+18}_{-0.0}$              | .45<br>00       | $-1.15^{+0.78}_{-0.70}$              | 5.9                | (   | Al XII            | $\underline{1s^2}$                           | 1s2p                               | 7.7573                         | 27.5 )              | $\leftarrow$ | $398^{+190}_{-101}$             |
| $7.7908^{+0.0067}$                          | $0.00^{+39}$                     | .61             | $1.46^{+0.97}$                       | 67                 | (   | Al XII            | $\underline{1s^2}$                           | 1s2p                               | 7.807(                         | 0.082)              | $\leftarrow$ | $-620^{+257}_{-127}$            |
| 1.1500_0.0033                               | 0.00_0.0                         | 00              | 1.40_0.94                            | 0.1                | (   | Al XII            | $\underline{1s^2}$                           | 1s2p                               | 7.803                          | 0.000)              |              | $-501^{+257}_{-127}$            |
| $7.8150^{+0.0092}_{-0.0011}$                | $7.03^{+4}$                      | 2.97            | $1.26^{+1.74}$                       | 4.1                |     | Al XII            | $\underline{1s^2}$                           | 1s2p                               | 7.807(                         | 0.082               | $\leftarrow$ | $310^{+352}_{-809}$             |
| 1.0100_0.0211                               | 1.00_7                           | .03             | 1.20-1.04                            |                    |     | Al XII            | $\underline{1s^2}$                           | 1s2p                               | 7.803                          | 0.000               |              | $430^{+352}_{-810}$             |
| $7.8482^{+0.0022}_{-0.0025}$                | $14.35^{+8}_{-6}$                | 3.95<br>5.36    | $-4.78^{+1.30}_{-1.55}$              | 62.4               |     | Mg XI             | $1s^2$                                       | 1s3p                               | 7.8503                         | 5.43                | <u> </u>     | $-81^{+85}_{-95}$               |
| $7.8751^{+0.0200}_{-0.0200}$                | $0.02^{+49}_{-0}$                | $9.98 \\ .02$   | $0.47^{+1.03}_{-0.47}$               | 1.2                |     | Al XII            | $\underline{1s^2}$                           | 1s2s                               | 7.872                          | 0.000               | $\leftarrow$ | $112^{+762}_{-762}$             |
|                                             |                                  |                 | · · · ·                              |                    | (   | Fe xxII           | $1s^22s^22p$                                 | $1s^2 2s 2p 5p$                    | 7.8806                         | 1.82                | )            | 888-544                         |
|                                             |                                  |                 |                                      |                    | Ì   | Fe XXII           | $1s^22s^22p$                                 | $1s^22s2p5p$                       | 7.8838                         | 1.49                | )            | $765^{+274}_{-544}$             |
|                                             |                                  |                 |                                      |                    | ÌÌ  | Ni XXIV           | $1s^2 2s 2p^2$                               | $1s^22s2p4d$                       | 7.8844                         | 7.31                | )            | $745^{+274}_{-544}$             |
| $7.9040^{+0.0072}_{-0.0143}$                | $13.39^{+3}_{-1}$                | 38.70           | $-1.30^{+0.88}_{-1.27}$              | 6.7                | Ì   | Ni xxiv           | $1s^2 2s 2p^2$                               | $1s^22s2p4d$                       | 7.8851                         | 5.30                | )            | $717_{-544}^{-344}$             |
| 010110                                      | -                                | 0100            |                                      |                    | ÌÌ  | Ni xxiv           | $1s^2 2s 2p^2$                               | $1s^22s2p4d$                       | 7.8872                         | 2.73                | )            | $638_{-544}^{+274}$             |
|                                             |                                  |                 |                                      |                    | Ò   | Fe xxII           | $1s^2 2s^2 2p$                               | $1s^22s2p5p$                       | 7.8883                         | 1.20                | )            | $597^{+274}_{-544}$             |
|                                             |                                  |                 |                                      |                    | ) ( | Ni xxII           | $2s^22p^3$                                   | $2s^22p^25d$                       | 7.8892                         | 2.70                | )            | $560^{+274}_{-544}$             |
|                                             |                                  |                 |                                      |                    | (   | Ni xxii           | $2s^2 2p^3$                                  | $2s^22p2p5d$                       | 7.9065                         | 4.31                | )            | $701_{-95}^{+190}$              |
|                                             |                                  |                 |                                      |                    | (   | Ni XXII           | $2s^22p^3$                                   | $2s^22p2p5d$                       | 7.9076                         | 3.38                | )            | $660^{+190}_{-95}$              |
| 7.0250+0.0050                               | $0.00^{+26}$                     | .40             | $0.82^{+0.71}$                       | . 97               | (   | Ni XXII           | $2s^2 2p^3$                                  | $2s^22p^25d$                       | 7.9097                         | 1.56                | )            | $580^{+190}_{-95}$              |
| 1.9200-0.0025                               | 0.00 - 0.0                       | 00              | -0.02-0.57                           | , J.1              | (   | Ni xxii           | $2s^2 2p^3$                                  | $2s2p^22p5p$                       | 7.9137                         | 1.27                | )            | $429_{-95}^{+189}$              |
|                                             |                                  |                 |                                      |                    | (   | Ni xxii           | $2s^2 2p^3$                                  | $2s^22p^25d$                       | 7.9144                         | 2.24                | )            | $401^{+189}_{-95}$              |
|                                             |                                  |                 |                                      |                    | (   | Ni XXII           | $2s^2 2p^3$                                  | $2s^22p^25d$                       | 7.9146                         | 1.22                | )            | $393^{+189}_{-95}$              |
| $7.9607^{+0.0052}$                          | $6.29^{+15}$                     | .26             | $1.65^{+1.26}$                       | 12.9               | (   | Ni XXII           | $2s2p^4$                                     | $2s2p2p^25d$                       | 7.952                          | 4.34                | )            | $295_{-152}^{+195}$             |
| -0.0040                                     | -6.5                             | 29              |                                      | 12.0               |     | Ni XXIII          | $1s^2 2s^2 2p^2$                             | $1s^2 2s 2p^2 4p$                  | 7.960                          | 3.66                |              | $22^{+195}_{-152}$              |
| $7.9745_{-0.0020}^{+0.0005}$                | $0.00^{+12}_{-0.0}$              | .13<br>00       | $2.04^{+0.90}_{-0.84}$               | 20.3               |     | Ni XXIV           | $1s^2 2s 2p^2$                               | $1s^2 2s 2p 4d$                    | 7.972                          | 4.32                |              | $74_{-76}^{+18}$                |

Table A III.1: List of lines in the 'non-dip' spectrum – sorted by wavelength (continued)

Table A III.1: List of lines in the 'non-dip' spectrum – sorted by wavelength (continued)

| )                                 | FWHN                   | $M EW \Delta y$         | $\chi^2$ | ior | n transiti         | on $\lambda_0$                            | $A_{ji}$                                   | $\Delta\lambda/\lambda\cdot d$ | c            |              |                                       |
|-----------------------------------|------------------------|-------------------------|----------|-----|--------------------|-------------------------------------------|--------------------------------------------|--------------------------------|--------------|--------------|---------------------------------------|
| [                                 | Å] [mÅ]                | [mÅ]                    |          |     | $i \ j$            | $[Å]10^1$                                 | $^{2}s^{-1}$ ]                             | [km/s                          | ]            |              |                                       |
| $7.9900^{+0.0024}_{-0.0029}$ 0.15 | +16.77                 | $-1.77^{+0.68}$         | 21.2     | (   | Fe XXIV            | $1s^2 2s$                                 | $1s^24p$                                   | 7.9857                         | 3.24 )       | $\leftarrow$ | $160^{+89}_{-122}$                    |
|                                   | -0.15                  |                         |          | (   | Fe XXIV            | $1s^22s$                                  | $1s^24p$                                   | 7.9960                         | 3.30 )       |              | $-226^{+89}_{-121}$                   |
| o.ooot±0.0077 o.t.                | $\pm 37.27$            | o o1±0.80               |          |     | Ni XXII            | $2s2p^4$                                  | $2s2p^22p5d$                               | 8.032:                         | 1.61         |              | $-116^{+287}_{-163}$                  |
| $8.0291^{+0.0011}_{-0.0044}$ 0.14 | -0.14                  | $0.91^{+0.00}_{-0.72}$  | 4.4      |     | N1 XXII            | $2s^2 2p^3$                               | $2p2p^{3}4d$                               | 8.034.                         | 1.43         |              | $-189^{+261}_{-163}$                  |
|                                   |                        |                         |          |     | N1 XXII            | $\frac{2s^2 2p^3}{2s^2}$                  | $2s^22p^25d$                               | 8.034                          | 3.89         |              | $\frac{-210_{-163}}{170^{+207}}$      |
|                                   |                        |                         |          | (   | INI XXIV           | $1s^2 2s 2p^2$                            | $1s^22s2p4d$                               | 8.043                          | 4.10         |              | $1/8_{-163}_{+207}$                   |
| 8 0485 <sup>+0.0056</sup> 2 03    | +26.44                 | $1.58 \pm 0.71$         | 10.9     |     | NI XXIV<br>Ni XXII | $1s^{-}2s2p^{-}$                          | $1s^22s2p4d$                               | 0.040;<br>8.040                | 0.00<br>4 08 |              | $\frac{1-163}{22+207}$                |
| 0.0400_0.0044 2.00                | -2.93                  | 1.00 - 0.89             | 10.2     |     | Ni XXIII           | 2s2p<br>$1s^22s^22m^2$                    | $2s2p^{-}5a$<br>$1s^{2}2s2m^{2}m^{2}m^{2}$ | 8 0/00                         | 4.50<br>3.52 |              | $-30_{-163}$<br>$-40^{+207}$          |
|                                   |                        |                         |          |     | Ni XXIV            | $1s^2 2s^2 p^2$                           | $1s^2 2s 2p 2p 4d$                         | 8.053                          | 9.77         |              | $-177^{+207}$                         |
|                                   | 175.49                 | 10.84                   |          |     | Fe XXII            | $\frac{1s^2 2s 2p^2}{1s^2 2s 2p^2}$       | $1s^2 2s 2p 1d$                            | 8.106:                         | 3.83         |              | $\frac{-232^{+740}}{-232^{+740}}$     |
| $8.1000^{+0.0200}_{-0.0200}$ 0.00 | $(-0.00)^{+75.42}$     | $0.61^{+0.84}_{-0.61}$  | 2.2      |     | Fe XXII            | $1s^2 2s 2p^2$                            | $1s^2 2s 2p 5d$                            | 8.107'                         | 2.19         |              | $-284^{+740}_{-740}$                  |
| 0.120r+0.0399 0.00                | +50.00                 | 0 44+0.78               | 1.0      |     | Ni XXI             | $2s2p^{5}$                                | $2s2p^45d$                                 | 8.115'                         | 3.28         |              | $621^{+1475}_{-1475}$                 |
| $8.1325_{-0.0399}$ 0.00           | -0.00                  | $0.44_{-0.44}$          | 1.0      |     | Ni XXI             | $2s2p^{5}$                                | $2s2p^45d$                                 | 8.117                          | 1.65         |              | $555^{+1475}_{-1475}$                 |
|                                   |                        |                         |          |     | Ni XXII            | $2s2p^4$                                  | $2s2p^35d$                                 | 8.166                          | 3.16         |              | $-159^{+182}_{-93}$                   |
| $8.1625^{+0.0050}_{-0.0025}$ 0.00 | $)^{+14.67}_{-0.00}$   | $0.95_{-0.81}^{+0.78}$  | 3.9      | (   | Ni XXI             | $2p^6$                                    | $2p2p^45d$                                 | 8.168                          | 5.24 )       |              | $-205^{+182}_{-93}$                   |
|                                   |                        |                         |          | (   | Fe XXII            | $1s^2 2s^2 2p$                            | $1s^2 2s^2 5d$                             | 8.1684                         | 2.88         |              | $-215^{+182}_{-93}$                   |
|                                   |                        |                         |          |     | Ni XXIII           | $1s^2 2s 2p^3$                            | $1s^2 2s 2p^2 4a$                          | 8.2201                         | 1.21         |              | $-3^{+181}_{-93}$                     |
| $8.2201^{+0.0050}_{-0.0026}$ 0.00 | $)^{+22.48}_{-0.00}$   | $1.13^{+0.87}_{-0.84}$  | 5.1      |     | Ni XXII            | $2s2p^4$                                  | $2p2p^{3}4p$                               | 8.2260                         | 1.95         |              | $-217^{+180}_{-93}$                   |
| -0.0020                           | -0.00                  | -0.84                   |          |     | Ni XXIII           | $1s^2 2s 2p^3$                            | $1s^2 2s 2p^2 4a$                          | 8.227                          | 1.50         |              | $-259^{+100}_{-93}$                   |
|                                   |                        |                         |          | (   | NI XXII            | $2s^2 2p^3$                               | $2s2p2p^24p$                               | 8.228.                         | 1.09         |              | $\frac{-294_{-93}}{120^{+268}}$       |
| 8 2726+0.0074 0.01                | +16.66                 | $1.10^{+0.83}$          | 47       |     | Fo XXII            | $1s^2 2s 2p^3$<br>$1s^2 2s 2p^2$          | $1s^{-}2s2p2p4$<br>$1s^{2}2s2p^{-}5d$      | 8 274(                         | 11.4<br>4.53 |              | $-159_{-94}$<br>$51^{+268}$           |
| $0.2720_{-0.0026}$ 0.01           | -0.01                  | $1.10_{-0.85}$          | 4.1      |     | Ni XXII            | $1s \ 2s 2p$                              | $1s \ 2s \ 2p \ 3a$                        | 8 2720                         | 4.55         |              | $-51_{-94}$<br>$-12^{+268}$           |
| $8.3062^{+0.0038}$ 0.02           | +19.98                 | $-1.72^{+0.66}$         | 17.6     | (   | Fe XXIII           | $\frac{1s^2 2s^2}{1s^2 2s^2}$             | $\frac{1s^2}{2s4n}$                        | 8.3038                         | 4 66         | ←            | $\frac{-12_{-94}}{88^{+135}}$         |
| 0.0002_0.0014 0.02                | -0.02                  | -0.60                   | 11.0     |     | Ni XXIII           | $\frac{13^{2}23^{2}}{1s^{2}2s^{2}2n^{2}}$ | $1s^2 2s^2 2n4c$                           | 8.384'                         | 5.08         |              | $\frac{-140^{+160}}{-140^{+160}}$     |
| $8.3808^{+0.0045}_{-0.0100}$ 0.08 | -0.08                  | $1.53^{+0.87}_{-0.87}$  | 9.1      | (   | Ni XXIII           | $1s^2 2s^2 2p^2$<br>$1s^2 2s^2 2p^2$      | $1s^2 2s^2 2p4a$                           | 8.3890                         | 14.0         |              | $-313^{+160}_{-357}$                  |
|                                   |                        |                         |          | (   | Ni xxi             | $2s^2 2p^4$                               | $2s2p2p^34p$                               | 8.3958                         | 0.11         |              | $\frac{154^{+177}}{154^{+177}}$       |
| $8.4001^{+0.0049}_{-0.0053}$ 0.10 | $^{+32.23}_{-0.10}$    | $-0.86^{+0.61}_{-0.95}$ | 5.0      | (   | Ni xxiii           | $\frac{1}{1s^2 2s^2 2p^2}$                | $1s^22s^22p4a$                             | 8.4051                         | 2.65 )       |              | $-179^{+176}_{-187}$                  |
| 010000                            | 0110                   | 0.000                   |          | Ì   | Ni xxiii           | $1s^2 2s^2 2p^2$                          | $1s^2 2s^2 2p4d$                           | 8.3896                         | 14.0         |              | $375_{-188}^{+177}$                   |
| 8 4202+0.0007 15 2                | 2+2.60                 | 11 08+0.90              | 780.0    | (   | Mg XII             | $\underline{1s}$                          | 2p                                         | 8.4192                         | 12.8 )       | $\leftarrow$ | $39^{+26}_{-29}$                      |
| 0.4203_0.0008 10.2                | <b>U</b> _1.66         | -11.30-1.12             | 100.0    | (   | Mg XII             | $\underline{1s}$                          | 2p                                         | 8.4246                         | 12.8 )       |              | $-154^{+26}_{-29}$                    |
| 10.0061                           | 110 46                 |                         |          |     | Fe xxi             | $\underline{1s^22s^22p^2}$                | $1s^2 2s^2 2p5d$                           | 8.5740                         | 2.85         | $\leftarrow$ | $28^{+214}_{-180}$                    |
| $8.5748^{+0.0061}_{-0.0051}$ 10.9 | $91^{+18.46}_{-10.91}$ | $-1.75^{+0.90}_{-1.14}$ | 11.0     |     | Fe XXI             | $1s^2 2s^2 2p^2$                          | $1s^2 2s^2 2p5d$                           | 8.5740                         | 2.43         |              | $28^{+214}_{-180}$                    |
|                                   |                        |                         |          |     | Fe XXI             | $1s^2 2s^2 2p^2$                          | $1s^2 2s^2 2p5a$                           | 8.5740                         | 1.55         |              | $\frac{28^{+214}_{-180}}{5^{+138}}$   |
| $8.5895^{+0.0040}_{-0.0041}$ 6.40 | $)^{+11.03}_{-6.40}$   | $2.11^{+1.08}_{-0.93}$  | 14.9     |     | Fe XXI             | $1s^2 2s 2p^3$                            | $1s^2 2s 2p^2 5a$                          | 8.589;                         | 1.67         |              | $5^{+100}_{-145}$                     |
|                                   |                        |                         |          |     | re XXI<br>Ni xxuu  | $1s^2 2s 2p^3$                            | $1s^{2}2s2p^{2}5c$                         | 8.091 <sup>2</sup><br>8.617(   | 1.31         |              | $\frac{-00_{-145}}{24^{+174}}$        |
|                                   |                        |                         |          |     | Ni XXIII           | $1s^{-}2s2p^{-3}$                         | $1s^{-}2s2p2p4$<br>$1s^{2}2s2p2p4$         | 8 620                          | 0.42<br>4 80 |              | $^{04}-87$<br>$14^{+174}$             |
| $8.6200^{+0.0050}_{-0.0025}$ 0.00 | $)^{+16.42}_{-0.00}$   | $1.32^{+1.20}_{-0.68}$  | 8.6      |     | Ni XXIII           | 1s 2s2p<br>$1s^2 2s2p^3$                  | $1s^2 2s^2 p^2 p^4$                        | 8 623!                         | 4.03         |              | $-122^{+174}$                         |
|                                   |                        |                         |          | (   | Fe XXIII           | $1s^2 2s 2p$                              | $1s^2 2s 2p 2p 4$                          | 8.617:                         | 7.04         |              | $98^{+174}_{-87}$                     |
|                                   |                        |                         |          | (   | Ni XXVII           | 1s2p                                      | 1s3d                                       | 8.7331                         | 2.2e + 05    | )            | $-654_{-658}^{-87}$                   |
|                                   |                        |                         |          |     | Ni xxvii           | 1s2p                                      | 1s3d                                       | 8.7069                         | 1.7e + 05    | ,<br>        | $245_{-660}^{+440}$                   |
|                                   |                        |                         |          | (   | Ni xxvii           | 1s2p                                      | 1s3d                                       | 8.7331                         | $1.1e{+}05$  | )            | $-654_{-658}^{+439}$                  |
| $8.7141^{+0.0128}_{-0.0192}$ 21.6 | $59^{+28.31}_{-21.69}$ | $-1.77^{+1.49}_{-0.98}$ | 5.1      |     | Ni xxvii           | 1s2p                                      | 1s3d                                       | 8.7135                         | $1.5e{+}04$  |              | $21^{+440}_{-660}$                    |
|                                   |                        |                         |          |     | Ni xxvii           | 1s2s                                      | 1s3p                                       | 8.7265                         | 10.2         |              | $-429^{+439}_{-659}$                  |
|                                   |                        |                         |          |     | Ni xxii            | $\frac{2s^2 2p^3}{2p^3}$                  | $2s^22p2p4d$                               | 8.7204                         | 8.82         |              | $-217^{+440}_{-659}$                  |
|                                   |                        |                         |          |     | Ni XXII            | $\frac{2s^2 2p^3}{2p^3}$                  | $2s^22p^24d$                               | 8.7227                         | 7.80         |              | $-296^{+440}_{-659}$                  |
| $8.7403^{+0.0046}_{-0.0020}$ 0.00 | $)^{+17.16}_{-0.00}$   | $-1.11^{+0.76}_{-0.63}$ | 6.0      |     | Fe XXII            | $\frac{1s^2 2s^2 2p}{2s^2 2p}$            | $1s^2 2s 2p 4p$                            | 8.7254                         | 3.54         | ) ←          | $513_{-98}^{+100}$                    |
| -0.0029                           | 0.00                   | -0.03                   |          | (   | Fe XXII            | $\frac{1s^2 2s^2 2p}{2s^2}$               | $1s^{2}2s2p4p$                             | 8.7360                         | 1.31         | )            | 149-98                                |
|                                   |                        |                         |          |     | NI XXII<br>Ni XXII | $2s2p^{4}$                                | $2s2p^{3}4d$                               | 8.778                          | 4.38         |              | $254_{-288}$<br>$144^{+393}$          |
|                                   |                        |                         |          |     | Ni xx              | $2s2p^{*}$                                | $2s2p^{3}4d$                               | 0.102                          | 1.42<br>5.49 |              | $144 - 288 \\ 101 + 392$              |
| $8.7862^{+0.0115}$ 0.00           | +74.91                 | $0.87^{+0.88}$          | 3.0      |     | Ni XXII            | $2s_2p$<br>$2s_2^22n^3$                   | $2s^2p^2p^24d$                             | 8.783                          | 1.08         |              | $\frac{121-288}{86^{+392}}$           |
|                                   | -0.09                  |                         | 0.0      |     | Fe XXI             | $1s^2 2s 2p^3$                            | $1s^2 2s 2n^2 5c$                          | 8.784                          | 1.58         |              | $49^{+392}$                           |
|                                   |                        |                         |          |     | Ni xx              | $2s2p^6$                                  | $2s2p^22p^35c$                             | 8.789                          | 2.22         |              | $-122^{+392}_{-288}$                  |
|                                   |                        |                         |          |     | Ni XXII            | $2s2p^4$                                  | $2s2p2p^24d$                               | 8.790;                         | 1.00         |              | $-141_{-288}^{+392}$                  |
|                                   |                        |                         |          |     | Ni XXII            | $2s2p^4$                                  | $2s2p2p^24d$                               | 8.8864                         | 9.27         |              | $204_{-251}^{+\bar{1}\bar{3}\bar{5}}$ |
| $8.8924^{+0.0040}_{-0.0074}$ 2.97 | $^{+14.38}_{-2.97}$    | $1.48^{+0.99}_{-0.85}$  | 8.2      |     | Ni XXII            | $2s2p^4$                                  | $2s2p2p^24d$                               | 8.890                          | 5.52         |              | $57^{+135}_{-251}$                    |
|                                   |                        |                         |          |     | Ni XXII            | $2p^{5}$                                  | $2p2p^34d$                                 | 8.891:                         | 6.91         |              | $42^{+135}_{-251}$                    |

Table A III.1: List of lines in the 'non-dip' spectrum – sorted by wavelength (continued)

|                                             | $\lambda$            | FWHN               | 1 EW                            | $\Delta \chi^2$       | io    | n transiti        | ion $\lambda_0$                 | $A_{ji}$                                   | $\Delta\lambda/\lambda\cdot c$ |                                |                                  |
|---------------------------------------------|----------------------|--------------------|---------------------------------|-----------------------|-------|-------------------|---------------------------------|--------------------------------------------|--------------------------------|--------------------------------|----------------------------------|
|                                             | [A]                  | [mA]               | [mA]                            |                       |       | i j               | [A]10                           | $\left[12 \mathrm{s}^{-1}\right]$          | [km/s]                         |                                | 506                              |
|                                             |                      |                    |                                 |                       |       | Ni XXI            | $2s2p^5$                        | $2s2p^44d$                                 | 8.905!                         | 8.11                           | $235^{+506}_{-336}$              |
| $8.9125^{+0.0150}_{-0.0100}$                | $0.00^{+72}$         | 5.00               | $0.96^{+0.79}$                  | $^{9}_{-}$ 2.8        |       | Ni XXII           | $2s^22p^3$                      | $2s^22p^24d$                               | 8.906(                         | 9.54                           | $200^{+300}_{-336}$              |
| 0.0100                                      |                      | .00                | -0.9                            | 5                     |       | Ni XXII           | $2s2p^4$                        | $2s2p^34d$                                 | 8.908(                         | 6.78                           | $132^{+303}_{-336}$              |
|                                             |                      |                    |                                 |                       | _     | Ni XXI            | $2s^22p^4$                      | $2s^22p^34d$                               | 8.920                          | 7.75                           | $-277^{+303}_{-335}$             |
| $8.9275^{+0.0025}_{-0.0075}$                | $0.00^{+52}$         | 2.16               | $1.40^{+0.89}$                  | $\frac{9}{7}$ 7.3     |       | Ni XXI            | $2s^2 2p^4$                     | $2s^2 2p 2p^2 4d$                          | 8.921                          | 3.18                           | $189^{+85}_{-251}$               |
| -0.0002                                     | 0.05+2               | 1.73               | -0.0                            | 57 41 C               |       | Fe XXIII          | $\frac{1s^2 2p^2}{2s^2}$        | $1s^22p4d$                                 | 8.929                          | 6.22                           | $-67^{+00}_{-251}$               |
| 8.9775_0.0030                               | $0.05_{-0}$          | .05                | $2.73_{-0.2}$                   | 41.0                  | ,     | Fe XXII           | $\frac{1s^2 2s^2 2p}{2s^2 4}$   | 1s <sup>2</sup> 2s <sup>2</sup> 4d         | 8.9748                         | $\rightarrow 05.30 \leftarrow$ | $89_{-100}$                      |
|                                             |                      |                    |                                 |                       |       | NI XXII<br>Ni XXI | $2s2p^{+}$                      | $2s2p^{2}2p4d$                             | 9.040                          | 0.00                           | $229_{-261}$<br>$200^{+250}$     |
| $0.0478^{+0.0075}$                          | $0.45^{+18}$         | 8.09               | $1.20^{+1.1}$                   | 7 5/                  |       | Ni XXI            | $2s^{-}2p^{-}$                  | $2s^{-}2p2p^{-}4d$                         | 0.041                          | 0.23<br>7.60                   | $200_{-261}$<br>$00^{+250}$      |
| 9.0478_0.0079                               | 9.40-9               | .45                | L.29_0.9                        | 0 0.4                 | :     | Ni XVI            | $\frac{2s^2 2p^2}{2p^2 q^2}$    | $2s^{-}2p^{-}4a$                           | 9.044(                         | 6.43                           | $39_{-261}$<br>$31^{+250}$       |
|                                             |                      |                    |                                 |                       |       | Ni XXI            | 2s 2p<br>$2s^2 2n^4$            | $2s^2 2p^2 p 40$                           | 9.040                          | 12.8                           | $-179^{+250}$                    |
| $9.1672^{+0.0011}$                          | $17.02^{+}$          | 4.41               | $8.97^{+1.1}$                   | $\frac{14}{10}$ 293.7 | . (   | Mg XI             | $1s^2$                          | 1s2n                                       | 9.1687                         | $19.5 \rightarrow \leftarrow$  | $-52^{+37}$                      |
| 0.101 - 0.0016                              | 1110                 | 3.44               | -1.                             | 18 -0011              |       | Fe XXI            | $\frac{10}{1s^2 2s^2 2p^2}$     | $\frac{1s^2 2s 2n^2 4n}{1s^2 2s^2 n^2 4n}$ | 9.1944                         | $2.88 \leftarrow$              | $-85^{+105}_{-150}$              |
| $9.1918^{+0.0032}_{-0.0048}$                | $13.21^{+}$          | 8.85               | $3.35^{+1.2}_{-1.2}$            | $^{28}_{22}$ 35.3     | (     | Fe xx             | $\frac{1}{2s^22p^3}$            | $2s2p2p^24p$                               | 9.1979                         | 1.04 )                         | $-200^{+105}_{-156}$             |
| -0.0048                                     | _                    | 0.85               | -1.0                            | 52                    | ÌÌ    | Fe xx             | $\frac{1}{2s^2 2p^3}$           | $2s^22p^25d$                               | 9.1979                         | 0.49 )                         | $-197^{+105}_{-156}$             |
| 0.0250+0.0000                               | 0.00+1               | 2.46               | $0.00 \pm 1.00$                 | 0 19.0                | (     | Mg XI             | $1s^2$                          | 1s2p                                       | 9.228:                         | $\rightarrow$ ( 000.0          | $222^{+0}_{-162}$                |
| $9.2350_{-0.0050}$                          | $0.00^{+}_{-0}$      | .00 4              | $2.02_{-0.9}$                   | 5 13.2                |       | Mg XI             | $\underline{1s^2}$              | 1s2p                                       | 9.231:                         | 0.034                          | $123_{-162}^{+0}$                |
|                                             |                      |                    |                                 |                       |       | Ni xx             | $2s2p^6$                        | $2s2p2p^44d$                               | 9.261                          | 7.19                           | $-57^{+89}_{-101}$               |
| $0.2600^{+0.0028}$                          | $0.00^{+1}$          | 4.38               | 85+0.8                          | 8 10.8                | (     | Fe xxII           | $1s^2 2s 2p^2$                  | $1s^22s2p4d$                               | 9.263(                         | 5.69 )                         | $-95^{+89}_{-101}$               |
| 3.2000 <sub>-0.0031</sub>                   | $0.09_{-0}$          | .09                | -0.9                            | 4 10.0                | '   ( | Ni xx             | $2s2p^6$                        | $2s2p^22p^34a$                             | 9.264                          | 4.87 )                         | $-143^{+89}_{-101}$              |
|                                             |                      |                    |                                 |                       | (     | Ni xxv            | $1s^2 2s 2p$                    | $1s^22p3p$                                 | 9.268                          | 8.79)                          | $-261^{+89}_{-101}$              |
|                                             |                      |                    |                                 |                       |       | Ni XXI            | $\frac{2s^2 2p^4}{2p^4}$        | $2s^22p^22p4s$                             | 9.2763                         | 0.86                           | $68^{+124}_{-157}$               |
| $9.2784^{+0.0038}$                          | $5.57^{+22}$         | 1.39               | $1.94^{+0.8}$                   | <sup>83</sup> 15 (    |       | Fe XX             | $2s2p^4$                        | $2s2p2p^25d$                               | 9.2788                         | 2.21                           | $-11^{+124}_{-157}$              |
| J.2104_0.0049                               | 0.01-5               | .57                | 1.04-1.2                        | 28 10.0               | '     | Fe XX             | $2s2p^4$                        | $2s2p2p^25d$                               | 9.2792                         | 2.08                           | $-24^{+124}_{-157}$              |
|                                             |                      |                    |                                 |                       |       | Fe xx             | $2s2p^4$                        | $2s2p^35d$                                 | 9.2812                         | 2.42                           | $-90^{+124}_{-157}$              |
| $9.3100\substack{+0.0050\\-0.0000}$         | $0.00^{+10}_{-0}$    | $\frac{5.24}{.00}$ | $2.45^{+1.0}_{-0.9}$            | $^{5}_{9}$ 17.9       | )     | Mg XI             | $\underline{1s^2}$              | 1s2s                                       | 9.314:                         | 0.000                          | $-140^{+161}_{-0}$               |
|                                             |                      |                    |                                 |                       |       | Ni xxv            | $1s^2 2s 2p$                    | $1s^22p3p$                                 | 9.323'                         | 1.36                           | $238^{+235}_{-280}$              |
| $0.0011 \pm 0.0073$                         | 10.00+               | 34 72              | $-0.4 \pm 1.4$                  | 6 0 0                 |       | Fe xx             | $2s2p^4$                        | $2p2p^{3}4p$                               | 9.331(                         | 1.33                           | $4^{+235}_{-280}$                |
| $9.3311_{-0.0087}^{+0.0016}$                | 13.00_               | 13.00              | $1.94_{-1.1}$                   | $\frac{6}{2}$ 9.0     |       | Fe XX             | $2s2p^4$                        | $2p2p^34p$                                 | 9.324                          | 0.88                           | $207^{+235}_{-280}$              |
|                                             |                      |                    |                                 |                       | (     | Fe XX             | $2s^2 2p^3$                     | $2s2p^{3}4p$                               | 9.321                          | (0.87)                         | $297^{+280}_{-280}$              |
| $0.2676^{\pm 0.0062}$                       | 22.07+               | 21.35              | 9 10+1.2                        | 26 91 0               |       | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^{2}2s2p^{2}4d$                         | 9.323.                         | 0.83                           | 252-280                          |
| $\frac{9.3070_{-0.0062}}{9.3956^{+0.0083}}$ | $\frac{22.07}{2.00}$ | 12.07              | $\frac{5.18 - 1.8}{1.69 + 0.8}$ | $\frac{50}{87}$ 11 (  |       | Ni xxv            | 1.22.22                         | 1.22.2.2m                                  | 0 3000                         | 6.30 )                         | $178^{+267}$                     |
| 5.5550_0.0038                               | $2.00_{-2}$          | .39                | 1.00 - 1.5                      | 50 11.0               | , (   | Ni xxv            | $\frac{18}{28}$                 | $1s^{2}2s3p$                               | 9.399                          | 9.21                           | $170_{-121}$<br>$178^{+14}$      |
| $9.4048^{+0.0004}$                          | $0.03^{+19}$         | 9.97               | $46^{+0.9}$                     | $\frac{7}{6}$ 6.9     |       | Fe xx             | $2s2n^4$                        | $2s2n^22n5d$                               | 9.404                          | 3.65                           | $19^{+14}$                       |
| 0.0073                                      | 0.000-0              | .03                |                                 | 3 010                 |       | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^22p2p^24p$                             | 9.402                          | 2.09                           | $72^{+14}_{-222}$                |
|                                             |                      |                    |                                 |                       | (     | Ne x              | <u>1s</u>                       | 5p                                         | 9.4807                         | 0.34 ) ←                       | $-195_{-38}^{-232}$              |
| $9.4745^{+0.0023}_{-0.0012}$                | $11.02^{+}_{-}$      | 4.74<br>8.19 -     | $6.05^{+1.}_{-1}$               | $^{12}_{11}$ 131.3    | i (   | Ne x              | <u>1s</u>                       | 5p                                         | 9.4809                         | 0.34 )                         | $-202_{-38}^{+73}$               |
|                                             |                      |                    |                                 |                       | (     | Fe xxi            | $\frac{1s^22s^22p^2}{2s^22p^2}$ | $1s^2 2s^2 2p4d$                           | 9.4797                         | 6.12 )                         | $-164_{-38}^{+73}$               |
|                                             |                      |                    |                                 |                       | (     | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^22s2p2p4$                              | 9.517                          | 4.39 )                         | $-194^{+136}_{-146}$             |
| $9.5116^{+0.0043}$                          | $12\ 29^+$           | 17.79              | $314^{+1.4}$                    | <sup>6</sup> 19.9     |       | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^22s2p2p4$                              | 9.5120                         | 4.02                           | $-13^{+136}_{-146}$              |
| 0.0046                                      |                      | 12.29              | -1.2                            | 5 -010                |       | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^22s2p2p4$                              | 9.514(                         | 2.45                           | $-93^{+130}_{-146}$              |
| 0. 7000±0.0050                              | 0.01+2               | 7 19               | . (a+1.1                        | 100                   |       | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^22s2p2p4$                              | 9.514(                         | 2.33                           | $-75^{+130}_{-146}$              |
| $9.5380_{-0.0005}$                          | $0.01^{+-}_{-0}$     | .01 4              | $2.40_{-1.0}$                   | 5 16.6                | ) (   | Fe XXVI           | 2s                              | 3p                                         | 9.536                          | 10.1                           | $53_{-16}^{+16}$                 |
| $9.7080\substack{+0.0028\\-0.0020}$         | $23.47^{+}_{-}$      | 4.99<br>5.70 -     | $8.57^{+1.3}_{-1.3}$            | $^{38}_{29}$ 153.7    | ·     | Ne x              | <u>1s</u>                       | 4p                                         | 9.7080                         | $0.67 \leftarrow 0.67$         | $^{-1}$ -62<br>15 <sup>+85</sup> |
|                                             |                      |                    |                                 |                       | _     | Fe XVI            | $\frac{1s}{1s^2 2s^2 m^3}$      | 4p                                         | 9.1085                         | 4 90                           | $-10_{-62}$<br>$-82^{+131}$      |
| $9.8161^{+0.0043}$                          | $9.07^{+12}$         | 5.05               | $2.77^{+1.2}$                   | <sup>6</sup> 15.6     |       | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^2 2s 2p^2 4d$                          | 9.819                          | 2.45                           | $-96^{+131}$                     |
| 0.0043                                      | 0.01 _9              | .07 -              |                                 | 5 2010                |       | Fe xx             | $2s2p^4$                        | $2p^22p^24p$                               | 9.812                          | 0.87                           | $108^{+132}_{-132}$              |
|                                             | 0.10+4               | 9 9 0 <i>.</i>     | a a a ± 1.0                     | 8                     |       | Fe XXI            | $1s^22s2p^3$                    | $1s^22s2p2p4$                              | 9.871(                         | 3.19                           | $70^{+607}_{-607}$               |
| $9.8739_{-0.0200}^{+0.0200}$                | $0.10^{+4.}_{-0.}$   | .10 (              | $0.93^{+1.0}_{-0.9}$            | $\frac{1}{3}$ 2.3     |       | Ni xxv            | $1s^2 2p^2$                     | $1s^22p3d$                                 | 9.873(                         | 16.5                           | $27^{+607}_{-607}$               |
| $0.00cc^{+0.0040}$                          | 0.75+2               | 1.58 4             | 40+1.2                          | 3 10 5                | . (   | Ni xxv            | $1s^22p^2$                      | $1s^22p3d$                                 | 9.924(                         | 9.00)                          | $-526^{+122}_{-111}$             |
| 9.9000_0.0037                               | 2.10 <sub>-2</sub>   | .75 2              | 2.40 <sub>-1.1</sub>            | 6 12.7                | Ì     | Ni xxv            | $1s^22p^2$                      | $1s^22p3d$                                 | 9.938(                         | 8.84)                          | $-948^{+122}_{-111}$             |
|                                             |                      |                    |                                 |                       | (     | Ni xxv            | $1s^22p^2$                      | $1s^22p3d$                                 | 9.907(                         | 1.86 )                         | $862^{+192}_{-509}$              |
| $9.9361^{+0.0063}$                          | $22.66^{+}$          | 27.34              | $2.36^{+1.73}$                  | 8 7/                  | (     | Ni XXIII          | $1s^2 2s^2 2p^2$                | $1s^2 2s 2p^2 3p$                          | 9.906:                         | 0.69)                          | $906^{+192}_{-509}$              |
| 0.0001-0.0168                               | 22.00_               | 15.63 4            |                                 | 3 1.9                 | . (   | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^22s2p2p4$                              | 9.911'                         | 0.57 )                         | $737^{+192}_{-509}$              |
|                                             |                      |                    |                                 |                       | (     | Fe XXI            | $1s^2 2s 2p^3$                  | $1s^22s2p2p4$                              | 9.908                          | 0.54)                          | $835^{+192}_{-509}$              |
| $9.9724^{+0.0400}_{-0.0000}$                | $21.56^{+}$          | 18.44              | $0.19^{+0.1}$                   | $^{19}_{18}$ 0.0      |       | Ni XXV            | $1s^2 2p^2$                     | $1s^22p3d$                                 | 9.9240                         | 9.00 )                         | $1461^{+1208}_{-0}$              |
| -0.0000                                     |                      | ±.00               | -1.4                            | 10 -10                | (     | N1 XXV            | $1s^2 2p^2$                     | $1s^22p3d$                                 | 9.9380                         | 8.84)                          | $1036_{-0}^{+1207}$              |

Table A III.1: List of lines in the 'non-dip' spectrum – sorted by wavelength (continued)

|                                              | $\lambda$ FW              | HM EW $\Delta \chi$     | <sup>2</sup> i | on        | transitio  | n $\lambda_0$                     | $A_{ji} \mid \Delta$      | $\lambda/\lambda \cdot c$ |                               |                                       |
|----------------------------------------------|---------------------------|-------------------------|----------------|-----------|------------|-----------------------------------|---------------------------|---------------------------|-------------------------------|---------------------------------------|
|                                              |                           | j [mA]                  |                |           | <u>i j</u> | [A]10                             | s j                       | [km/s]                    |                               | 1 01 + 124                            |
|                                              |                           |                         |                |           | Fe XX      | $\frac{2s^2 2p^3}{2p^3}$          | $2s^22p2p4d$              | 9.9977                    | $6.56 \rightarrow -$          | $-161_{-89}^{+121}$                   |
| $9.9924^{+0.0041}_{-0.0020}$                 | $7.10^{+10.08}_{-7.10}$   | $-2.76^{+1.05}_{-1.00}$ | 20.4           | (         | Fe XX      | $\frac{2s^22p^3}{2s^2}$           | $2s^2 2p^2 4d$            | 10.0004                   | 5.80 )                        | $-241^{+123}_{-89}$                   |
| 0.0030                                       |                           | 1.00                    |                |           | Fe xx      | $2s^22p^3$                        | $2s^22p2p4d$              | 9.9935                    | 0.81                          | $-33^{+124}_{-89}_{+122}$             |
| 0.0020                                       | 16 75                     | 1 1 1 1 1 1             |                | (         | Fe xx      | $2s^22p^3$                        | $2s^22p^24d$              | 10.0054                   | 3.01 )                        | $-391^{+125}_{-89}$                   |
| $10.0335^{+0.0030}_{-0.0029}$                | $21.88^{+0.75}_{-5.11}$   | $-6.85^{+1.33}_{-1.43}$ | 86.7           |           |            |                                   |                           |                           |                               |                                       |
| $10.1240^{+0.0054}$                          | 4 37+33.85                | -1 77 $+0.99$           | 8.9            |           | Fe xx      | $2s^2 2p^3$                       | $2s^22p^24d$              | 10.1203                   | $2.12 \leftarrow$             | $137^{+160}_{-592}$                   |
| 10.1249 - 0.0200                             | 4.07 - 4.37               | -1.17-2.05              | 0.9            | (         | Fe xx      | $2s^22p^3$                        | $2s^22p^24d$              | 10.1322                   | 0.39 )                        | $-216^{+160}_{-592}$                  |
| $10.2277 \pm 0.0023$                         | $0.26^{+2.86}$            | 4 80+0.68               | 109 5          |           | Ne x       | <u>1s</u>                         | 3p                        | 10.2385                   | $1.65 \leftarrow$             | $-24^{+68}_{-11}$                     |
| $10.2377_{-0.0004}$                          | $0.20_{-0.26}$            | $-4.00_{-0.48}$         | 106.5          |           | Ne x       | <u>1s</u>                         | $_{3p}$                   | 10.2396                   | 1.64                          | $-56^{+68}_{-11}$                     |
|                                              |                           |                         |                |           | Ni XXIV    | $1s^22s^22p$                      | $1s^22s^23d$              | 10.277(                   | 21.9                          | $83^{+74}_{-307}$                     |
| $10.0700 \pm 0.0025$                         | 0.00+40.24                | 2.9c + 1.20             | 10.7           |           | Fe xx      | $2p^{5}$                          | $2p2p^34d$                | 10.2698                   | 5.14                          | $295_{-307}^{+74}$                    |
| $10.2799_{-0.0105}$                          | $0.23_{-0.23}$            | $2.80_{-1.16}$          | 19.7           | (         | Fe xx      | $2p^{5}$                          | $2s2p2p^25f$              | 10.264                    | 1.83)                         | $453_{-307}^{+74}$                    |
|                                              |                           |                         |                | Ì         | Fe xx      | $2p^5$                            | $2s2p2p^25f$              | 10.264                    | 1.44                          | $453_{-307}^{+74}$                    |
| to cocr+0.0034                               | o. o.o.±11.95             | $2 = \pm \pm 1.47$      | 10.0           | Ì         | Ni XXIII   | $1s^2 2s 2p^3$                    | $1s^22p2p^23p$            | 10.2990                   | 3.26)                         | $102^{+98}_{-72}$                     |
| $10.3025^{+0.0034}_{-0.0025}$                | $0.08^{+11.95}_{-0.08}$   | $2.55^{+1.47}_{-1.02}$  | 18.0           |           | Ni xxIII   | $1s^2 2s^2 2p^2$                  | $1s^22s2p^23p$            | 10.301                    | 1.01                          | $33^{+98}_{-72}$                      |
|                                              | 1 5 93                    | 1.1.22                  |                | (         | Ni XXIII   | $1s^2 2s 2n^3$                    | $1s^22n^33n$              | 10.308!                   | 8.10)                         | $325^{+71}$                           |
| $10.3201^{+0.0024}_{-0.0001}$                | $0.01^{+5.83}_{-0.01}$    | $2.83^{+1.22}_{-1.17}$  | 18.0           | $\hat{i}$ | Fe XVIII   | $2s^2 2n^5$                       | $2s^2 2n^4 5d$            | 10.310                    | 2.14                          | $276^{+71}$                           |
|                                              |                           |                         |                |           | Ni XVIV    | 1- <sup>2</sup> 2-2= <sup>2</sup> | 1- <sup>2</sup> 2-2-2-2-1 | 10.337                    | 5.45                          | $\frac{210_{-4}}{6^{+145}}$           |
| $10.3375^{+0.0050}_{-0.0025}$                | $0.00^{+12.39}_{-0.00}$   | $1.94^{+1.05}_{-1.22}$  | 8.1            |           | Fo yy      | 1s 2s2p                           | 1s 2s2p3a                 | 10.338                    | 0.81                          | $0_{-72}$<br>$23^{+145}$              |
|                                              |                           |                         |                |           | N: VVIII   | 2p                                | 2p 4s                     | 10.000                    | 5.77                          | $\frac{-23_{-72}}{c_4+140}$           |
| $10.4825^{+0.0049}_{-0.0006}$                | $0.01^{+15.33}_{-0.07}$   | $3.49^{+0.87}_{-0.95}$  | 28.6           |           | NI XXIII   | $1s^{2}2s^{2}2p^{2}$              | $1s^{2}2s2p^{2}3p$        | 10.484                    | D. ( (                        | $-04_{-19}$                           |
| 10 0007+0.0010                               | F 10+3.91                 | C. CT+0.87              | 104.0          | -         |            | 2s2p1                             | $2p^{2}2p^{2}3p$          | 10.465.                   | 0.40<br>7.10                  | -20-19                                |
| $\frac{10.6207_{-0.0013}}{10.6200\pm0.0025}$ | $5.19_{-5.18}$            | $-6.05_{-1.03}$         | 164.0          | (         | Fe XXIV    | $1s^2 2s$                         | $1s^2 3p$                 | 10.6190                   | $(7.19) \leftarrow$           | $47_{-37}$                            |
| $10.6389^{+0.0023}_{-0.0027}$                | $5.01^{+1110}_{-5.01}$    | $-3.83^{+1.00}_{-1.47}$ | 42.7           | _         | -          |                                   |                           | 10.0000                   |                               | · = ± 105                             |
| $10.6613^{+0.0037}_{-0.0037}$                | $19.99^{+10.15}_{-0.72}$  | $-5.63^{+1.51}$         | 51.4           | ,         | Fe XXIV    | $\frac{1s^2 2s}{1s}$              | $1s^23p$                  | 10.6630                   | $7.41 \leftarrow$             | $-47^{+103}_{-99}$                    |
|                                              | 8.78                      | 0100=1.60               | -              | (         | Fe XVII    | $2s^2 2p^6$                       | $2s^2 2p^5 6d$            | 10.6570                   | 1.15 )                        | $122_{-99}^{+103}$                    |
|                                              |                           |                         |                |           | Ni XXIII   | $1s^2 2s^2 2p^2$                  | $1s^2 2s^2 2p 3d$         | 10.707!                   | 17.6                          | $-22^{+179}_{-144}$                   |
| 10.0004                                      | 10.01                     | 11.05                   |                |           | Ni XXIII   | $1s^22s^22p^2$                    | $1s^22s^22p3d$            | 10.7090                   | 14.3                          | $-54^{+179}_{-144}$                   |
| $10.7071^{+0.0064}_{-0.0051}$                | $21.87^{+13.61}_{-15.62}$ | $4.76^{+1.95}_{-1.79}$  | 20.7           |           | Ni XXIV    | $1s^2 2s 2p^2$                    | $1s^22s2p3d$              | 10.701                    | 8.86                          | $144^{+179}_{-144}$                   |
|                                              |                           |                         |                |           | Ni XXIII   | $1s^22s2p^3$                      | $1s^22s2p^23d$            | 10.713                    | 5.64                          | $-171^{+179}_{-144}$                  |
|                                              |                           |                         |                | (         | Ni XXIII   | $1s^2 2s 2p^3$                    | $1s^2 2s 2p^2 3d$         | $10.700^{2}$              | 5.18 )                        | $188^{+179}_{-144}$                   |
|                                              |                           |                         |                |           | Ni XXIII   | $1s^22s^22p^2$                    | $1s^22s^22p3d$            | $10.721_{-}$              | 24.5                          | $24^{+76}_{-63}$                      |
| $10.7223^{+0.0027}_{-0.0023}$                | $0.35^{+6.94}_{-0.35}$    | $3.52^{+1.41}_{-1.34}$  | 21.3           |           | Ni XXII    | $2s^22p^3$                        | $2s2p^33p$                | 10.720                    | 4.58                          | $41^{+76}_{-63}$                      |
| 0.0020                                       | 0.00                      | 1.01                    |                |           | Ni xxii    | $2s2p^4$                          | $2p2p^{3}3p$              | 10.720:                   | 2.76                          | $57^{+76}_{-63}$                      |
|                                              |                           |                         |                | <u> </u>  | Ni xxiii   | $1s^2 2s 2p^3$                    | $1s^2 2s 2p 2p 3$         | 10.743                    | 34.9                          | $-87^{+398}_{-89}$                    |
| $10 = 40 = \pm 0.0143$                       | $0.1 = \pm 29.25$         | 0.15+1.25               | 0.0            |           | Ni xxIII   | $1s^2 2s 2p^3$                    | $1s^2 2s 2p^2 3d$         | 10.752                    | 29.9                          | $-326^{+398}_{-89}$                   |
| $10.7407_{-0.0032}^{+0.0110}$                | $0.17_{-0.17}$            | $2.15^{+1.20}_{-1.21}$  | 8.8            | (         | Ni xxIII   | $1s^2 2s^2 2p^2$                  | $1s^22s^22p3d$            | 10.758                    | 10.6 )                        | $-483^{+397}_{-89}$                   |
|                                              |                           |                         |                | Ì         | Ni xxIII   | $1s^2 2s 2p^3$                    | $1s^22s2p^23d$            | 10.7360                   | 8.86                          | $117^{+398}_{-398}$                   |
| $10.7600^{+0.0050}_{-0.0055}$                | $0.00^{+12.06}$           | $-0.87^{+0.57}_{-1.00}$ | 4.2            | (         | Ne ix      | $1s^2$                            | 1s5n                      | 10.7650                   | $0.52 \rightarrow \leftarrow$ | $-138^{+138}_{-138}$                  |
|                                              | 0.00                      | -1.80                   |                |           | Ni XXIII   | $\frac{1s^2}{2s2n^3}$             | $1s^2 2s 2n^2 3d$         | 10 8197                   | 18.3                          | $-60^{+207}$                          |
|                                              |                           |                         |                |           | Ni XXIII   | $1s^2 2s^2 p$<br>$1s^2 2s^2 n^3$  | $1s^2 2s^2 p^2 3d$        | 10.8215                   | 11.0                          | $-110^{+207}$                         |
| $10.8175^{+0.0075}$                          | $0.00^{+11.04}$           | $-1.59^{+0.90}$         | 75             |           | Fo viv     | $2a^22m^4$                        | $2^{2}2^{3}d$             | 10.8156                   | 9.49                          | $53^{+10}$                            |
| 10.0110_0.0025                               | $0.00_{-0.00}$            | 1.00 - 1.09             | 1.0            |           | Fo VIV     | 2s 2p<br>$2r^2 2r^4$              | 25 2p 4u                  | 10.0100                   | 6.19                          | $33_{-70}$<br>$42^{+207}$             |
|                                              |                           |                         |                |           | Fo VIV     | 2s 2p                             | $2s \ 2p \ 2p \ 4a$       | 10.8160                   | 5.65                          | $^{42}_{42}^{-70}_{-70}_{42}^{+207}$  |
|                                              |                           |                         |                | ┢         | N; VVIII   | 2s 2p                             | 2s 2p 4a                  | 10.8100                   | 19.5                          | $\frac{42-70}{76+102}$                |
| $10.9970 \pm 0.0037$                         | r oo+15.34                | $2.24 \pm 1.37$         | 10.0           |           | NI XXIII   | $1s^2 2p^4$                       | $1s^2 2p^3 3d$            | 10.000                    | 10.0                          | $-70_{-199}$                          |
| $10.8859_{-0.0072}$                          | $5.09^{+}_{-5.09}$        | $5.34_{-1.31}$          | 18.0           | (         | NI XXIII   | $1s^{2}2s2p^{3}$                  | 1s <sup>2</sup> 2s2p2p3   | 10.893.                   | 9.34                          | $-201_{-199}$                         |
|                                              |                           |                         |                |           | INI XXIV   | $1s^2 2s 2p^2$                    | $1s^22s2p3s$              | 10.880;                   | 0.30                          | $138_{-199}$                          |
| $10.9150^{+0.0025}_{-0.0027}$                | $0.05^{+19.52}_{-0.05}$   | $3.66^{+1.58}_{-1.10}$  | 24.7           | (         | N1 XXIII   | $1s^2 2p^4$                       | $1s^22p2p^23d$            | 10.920:                   | 11.7 )                        | $-143_{-74}$                          |
| -0.0027                                      | -0.05                     | -1.10                   |                | (         | Fe XIX     | $2p^{6}$                          | $2p2p^44d$                | 10.923                    | 8.25)                         | $-222_{-74}^{+00}$                    |
| $10.9450^{+0.0000}_{-0.0050}$                | $0.00^{+27.55}$           | $3.82^{+1.42}$          | 23.8           |           | Ni XXIII   | $1s^22p^4$                        | $1s^22p2p^23d$            | 10.940:                   | 28.8                          | $130^{+0}_{-137}$                     |
|                                              | -0.00                     | -1.32                   | -0.0           | $\vdash$  | Ni XXIII   | $1s^2 2s^2 2p^2$                  | $1s^2 2s^2 2p3d$          | 10.943:                   | 8.04                          | $49^{+0}_{-137}$                      |
| $10.9871^{+0.0019}$                          | $13.68^{+5.10}$           | $-7.05^{+1.30}$         | 104 5          | (         | Fe xxiii   | $1s^22s^2$                        | $1s^22s3p$                | 10.9810                   | $7.56$ ) $\leftarrow$         | $167^{+51}_{-58}$                     |
|                                              | -4.50                     | -1.00-1.33              | 104.0          | (         | Fe xxII    | $\underline{1s^2 2s^2 2p}$        | $1s^22s2p3p$              | 10.9935                   | 1.35 )                        | $-174^{+51}_{-58}$                    |
| $11.0071^{+0.0032}_{-0.0031}$                | $17.86^{+8.15}_{-6.54}$   | $-5.69^{+1.40}_{-1.49}$ | 56.1           | (         | Ne ix      | $1s^2$                            | 1s4p                      | 11.0010                   | $1.03$ ) $\leftarrow$         | $165^{+86}_{-85}$                     |
| 11 0225+0.0033                               | $0.02^{+11.44}$           | 2 24+0.83               | 16.6           | (         | Fe xxIII   | $1s^2 2s^2$                       | $1s^22s3p$                | 11.0190                   | $4.68$ ) $\leftarrow$         | $96^{+90}_{-68}$                      |
| 11.0220 - 0.0025                             | $0.03_{-0.03}$            | -2.24-1.05              | 10.0           | ) (       | Fe xvii    | $2s^2 2p^6$                       | $2s2p^64p$                | 11.0260                   | 1.75 )                        | $-95_{-68}^{+90}$                     |
|                                              |                           |                         |                | È         | Ni XXIII   | $1s^22p^4$                        | $1s^22p2p^23d$            | 11.089                    | 13.3                          | -13 <sup>+189</sup> / <sub>-220</sub> |
| 11 0000+0 0070                               | $40, 40\pm0, 00$          | $0.00^{\pm 2.18}$       | 40.1           |           | Ni XXIII   | $1s^2 2p^4$                       | $1s^22p2p^23d$            | 11.095                    | 12.9                          | $-175_{-228}^{+189}$                  |
| $11.0886_{-0.0085}$                          | $40.42_{-14.98}$          | $8.28_{-2.17}$          | 42.1           | 1         | Ni XXIII   | $1s^2 2s 2p^3$                    | $1s^22s2p^23d$            | 11.0894                   | 12.3                          | $-20^{+189}_{-220}$                   |
|                                              |                           |                         |                |           | Ni XXI     | $2s2p^{5}$                        | $2s2p2p^33d$              | 11.095:                   | 10.8                          | $-177_{-228}^{-189}$                  |

Table A III.1: List of lines in the 'non-dip' spectrum – sorted by wavelength (continued)

|                                          | $\lambda$ FWHM                | M EW $\Delta \chi$       | <sup>2</sup> i | on                     | $\operatorname{transitio}$ | n $\lambda_0$                                     | $A_{ji} \mid \Delta$                 | $\lambda/\lambda \cdot c$ |                               |                                         |
|------------------------------------------|-------------------------------|--------------------------|----------------|------------------------|----------------------------|---------------------------------------------------|--------------------------------------|---------------------------|-------------------------------|-----------------------------------------|
|                                          | [Å] [mÅ]                      | [mÅ]                     |                |                        | i j                        | $[Å]10^{12}$                                      | s <sup>-1</sup> ]                    | [km/s]                    |                               |                                         |
|                                          |                               |                          |                |                        | Ni XXIII                   | $1s^2 2p^4$                                       | $1s^22p^33d$                         | 11.117                    | 37.9                          | $112^{+506}_{-573}$                     |
| $11.1212^{+0.0188}_{-0.0110}$            | $6.25^{+43.75}$               | $1.20^{+2.66}$           | 3.1            |                        | Ni XXIII                   | $1s^22p^4$                                        | $1s^22p2p^23d$                       | 11.115!                   | 16.5                          | $143^{+506}_{-573}$                     |
|                                          | -6.25                         | 1.20                     | 0.1            |                        | Ni XXIII                   | $1s^22p^4$                                        | $1s^22p2p^23d$                       | 11.125:                   | 16.5                          | $-106^{+506}_{-572}$                    |
|                                          |                               |                          |                |                        | Ni XXI                     | $2s2p^{5}$                                        | $2s2p2p^33d$                         | 11.128                    | 9.20                          | $-191^{+303}_{-572}$                    |
| $11.151a\pm 0.0084$                      | o 4 <b>F</b> o±25 41          | $4 2 2^{\pm 2} 24$       | 150            |                        | Ni XXII                    | $2s^2 2p^3$                                       | $2s^2 2p^2 3d$                       | 11.146                    | 5.26                          | $126^{+227}_{-213}$                     |
| $11.1516_{-0.0079}^{+0.0034}$            | $24.59^{+25.41}_{-24.59}$     | $4.26^{+2.24}_{-2.55}$   | 15.8           |                        | Ni XXIII                   | $1s^2 2s 2p^3$                                    | $1s^2 2s 2p 2p 3$                    | 11.149:                   | 4.51                          | $63^{+221}_{-213}$                      |
|                                          |                               |                          |                |                        | Ni XXIII                   | $1s^2 2s 2p^3$                                    | $1s^22s2p2p3$                        | 11.147;                   | 4.46                          | $\frac{117_{-213}}{-213}$               |
| $11.1790^{+0.0053}_{-0.0057}$            | $22.21^{+18.06}_{-10.95}$     | $5.78^{+2.22}_{-2.27}$   | 27.2           |                        | N1 XXII                    | $\frac{2s^2 2p^3}{2}$                             | $2s^22p2p3d$                         | 11.181                    | 23.0                          | $-75_{-153}$                            |
|                                          | 10.00                         | 2.21                     |                |                        | Fe XXIV                    | 1s <sup>2</sup> 2p                                | 1s <sup>2</sup> 3d                   | 11.176                    | 21.5                          | $\frac{80_{-153}}{50^{\pm 141}}$        |
| $11.0140 \pm 0.0053$                     | $01 00 \pm 18.30$             | F FF+2.31                | 0.0 4          |                        | N1 XXII                    | $\frac{2s^2 2p^3}{2}$                             | $2s^22p2p3d$                         | 11.211                    | 16.3                          | $59_{-152}^{+112}$                      |
| $11.2140_{-0.0057}$                      | $21.20_{-21.20}$              | $5.55_{-2.50}$           | 26.4           |                        | NI XXII                    | $2s^2 2p^3$                                       | $2s^2 2p^2 3d$                       | 11.218                    | 12.8                          | $-110_{-151}$                           |
|                                          |                               |                          |                | (                      | INI XXII<br>Ee XVIII       | 2s2p*                                             | $2s2p^33d$                           | 11.2100                   | 11.0                          | $\frac{108_{-152}}{282^{+66}}$          |
| $11.2152 \pm 0.0025$                     | $0.08^{+9.91}$                | $2.10^{+1.04}$           | <u> </u>       |                        | ге хүш<br>Бо хүш           | $\frac{2s^2 2p^3}{2s^2 2p^3}$                     | $2s^{-}2p^{-}4d$                     | 11.3200<br>11.3260        | $4.62) \leftarrow$            | $-263_{-13}$                            |
| $11.3133_{-0.0005}$                      | $0.08_{-0.08}$                | $-3.10_{-1.02}$          | 20.2           |                        | Fe XVIII                   | $\frac{2s^2 2p^3}{2s^2 2p^3}$                     | $2s^{2}2p^{4}d$                      | 11.3200                   | (4.40)                        | $-200_{-13}$                            |
|                                          |                               |                          |                |                        | Ni XVI                     | 2s 2p                                             | 2s 2p 4d                             | 11.3200                   | 15.5                          | $\frac{-263_{-13}}{107^{+172}}$         |
|                                          |                               |                          |                |                        | Ni XXI                     | $2s2p^{2}$                                        | 2s2p 2p 3a                           | 11 360                    | 10.0                          | $-107_{-65}$<br>$47^{+172}$             |
| $11.3710^{+0.0065}_{-0.0025}$            | $0.32^{+43.78}_{-0.32}$       | $3.25^{+1.65}_{-1.41}$   | 14.8           | (                      | Fe XXIII                   | $1s^22s^2p$                                       | $1s^22s^3d$                          | 11.366(                   | 9.35                          | $131^{+172}$                            |
|                                          |                               |                          |                |                        | Ni XXII                    | $2s^2n^4$                                         | $2s^{2}n^{2}n^{2}3d$                 | 11.372:                   | 8.88                          | $-35^{+172}$                            |
| $114264^{+0.0036}$                       | $740^{+7.17}$                 | $-3.96^{+1.15}$          | 29.9           |                        | Fe XXII                    | $1s^2 2s^2 2n$                                    | $1s^2 2s 2n 3n$                      | 11.4270                   | 5.85 ←                        | $-17^{+95}$                             |
| 11.1201_0.0029                           | + 8 01                        | 1.40                     | 20.0           | (                      | Fe XXII                    | $\frac{15\ 25\ 2p}{1s^2 2s^2 2n}$                 | $1s^2 2s 2p 3p$                      | 11.4900                   | $6.40 \rightarrow \leftarrow$ | $-289^{+155}$                           |
| $11.4789^{+0.0039}_{-0.0025}$            | $4.73_{-4.73}^{+8.91}$        | $-3.16^{+1.47}_{-1.24}$  | 15.4           | ì                      | Fe XXII                    | $\frac{16^{2}2s^{2}2p}{1s^{2}2s^{2}2p}$           | $1s^2 2s 2p 3p$                      | 11.4900                   | 1.68                          | $-289^{+155}$                           |
|                                          | + 10 14                       | - · - ±1 02              |                | Ì                      | Fe XVIII                   | $\frac{2s^2 2p^5}{2s^2 2p^5}$                     | $2s^22p^22p^24d$                     | 11.5270                   | $3.55 \rightarrow \leftarrow$ | $\frac{100-66}{110+33}$                 |
| $11.5312_{-0.0037}^{+0.0013}$            | $0.00^{+10.14}_{-0.00}$       | $-3.48^{+1.02}_{-1.01}$  | 34.7           | Ì                      | Fe xviii                   | $\frac{1}{2s^2 2p^5}$                             | $2s^22p^44d$                         | 11.5270                   | 4.22 )                        | $110^{+33}_{-97}$                       |
| $11.5426^{+0.0024}_{-0.0001}$            | $0.01^{+7.31}_{-0.01}$        | $-3.47^{+1.05}_{-1.03}$  | 28.4           |                        | Ne ix                      | $\frac{1}{1s^2}$                                  | 1s3p                                 | 11.5440                   | 2.48 ←                        | $-37^{+63}_{-3}$                        |
|                                          | -0.01                         | -1.03                    |                | (                      | Ni XXII                    | $2s2p^4$                                          | $2s2p2p^23d$                         | 11.599:                   | 7.34)                         | $-131^{+128}_{-122}$                    |
|                                          |                               |                          |                | Ì                      | Ni XXII                    | $2s2p^4$                                          | $2s2p^33d$                           | 11.598                    | 7.32                          | $-119^{+128}_{-132}$                    |
| $11.5942^{+0.0049}_{-0.0051}$            | $21.03^{+19.40}_{-14.99}$     | $6.56^{+2.62}_{-2.42}$   | 28.9           |                        | Fe xxIII                   | $1s^2 2p^2$                                       | $1s^22p3d$                           | 11.590                    | 4.29                          | $107^{+128}_{-132}$                     |
|                                          |                               |                          |                |                        | Fe XXI                     | $1s^22s2p^3$                                      | $1s^22p^22p3p$                       | $11.596_{-}$              | 3.75                          | $-56^{+128}_{-132}$                     |
|                                          |                               |                          |                |                        | Fe XXI                     | $1s^2 2s 2p^3$                                    | $1s^22p2p^23p$                       | 11.594                    | 3.33                          | $-7^{+128}_{-132}$                      |
|                                          |                               |                          |                | (                      | Fe XXIII                   | $1s^{2}2p^{2}$                                    | $1s^22p3d$                           | 11.616                    | 12.3 )                        | $246^{+213}_{-213}$                     |
| $11.6256^{+0.0082}_{-0.0082}$            | $30.39^{+10.04}_{-11.24}$     | $6.30^{+2.98}_{-2.43}$   | 20.9           | (                      | Ni XXII                    | $2s2p^4$                                          | $2s2p2p^23d$                         | 11.615:                   | 9.54 )                        | $268^{+213}_{-213}$                     |
|                                          |                               |                          |                |                        | Ni XXII                    | $2s2p^4$                                          | $2s2p^33d$                           | $11.619_{-}$              | 8.82                          | $161^{+213}_{-213}$                     |
| $11.6609^{+0.0052}$                      | $28\ 21^{+12.21}$             | $8.85^{+2.83}$           | 39.7           |                        | Ni XXII                    | $2s2p^4$                                          | $2s2p^33d$                           | 11.662                    | 10.8                          | $-40^{+134}_{-132}$                     |
| 11.0005_0.0051                           | 20.21-10.80                   | $0.00_{-2.58}$           | 00.1           | (                      | Ni XXII                    | $2s2p^4$                                          | $2s2p2p^23d$                         | 11.652(                   | 2.52)                         | $229^{+134}_{-132}$                     |
| $11.6952^{+0.0078}_{-0.0078}$            | $40.42^{+0.00}$               | $8.77^{+2.75}$           | 34.1           | (                      | Fe XXIII                   | $1s^2 2p^2$                                       | $1s^22p3d$                           | 11.684                    | 6.69 )                        | $275^{+200}_{-232}$                     |
|                                          | -9.78                         | -2.36                    | 0111           |                        | Ni XXI                     | $2s2p^5$                                          | $2s2p2p^33d$                         | 11.689'                   | 2.99                          | $141^{+200}_{-232}$                     |
| $11.7698^{+0.0012}_{-0.0014}$            | $8.77^{+3.89}_{-4.02}$        | $-10.01^{+0.98}_{-1.04}$ | 248.9          |                        | Fe XXII                    | $\frac{1s^2 2s^2 2p}{2s^2 2p}$                    | $1s^2 2s^2 3d$                       | 11.7700                   | $16.3 \leftarrow$             | $-6^{+31}_{-35}$                        |
|                                          | -4.92                         | -1.94                    |                | (                      | Fe XX                      | $\frac{2s^2 2p^3}{2s^2 2p^3}$                     | $2s2p^22p3p$                         | 11.7620                   | 1.66 )                        | $\frac{198^{+31}_{-36}}{24^{\pm}102}$   |
| $11.8435^{+0.0040}_{-0.0035}$            | $0.00^{+18.05}_{-0.00}$       | $2.71^{+1.65}_{-1.60}$   | 7.3            |                        | N1 XX                      | $\frac{2s^2 2p^5}{2}$                             | $2s^22p2p^33d$                       | 11.8460                   | 24.1                          | $-64^{+102}_{-88}$                      |
|                                          | 0.00                          | 1.00                     |                |                        | Fe XXII                    | $\frac{1s^2 2s 2p^2}{2s^2}$                       | $1s^22s2p3d$                         | 11.844.                   | 11.2                          | $-10_{-88}$                             |
| $11.8887^{+0.0057}_{-0.0053}$            | $29.52^{+10.90}_{-10.27}$     | $8.81^{+2.78}_{-2.62}$   | 37.3           | (                      | Fe XXII                    | $1s^2 2s 2p^2$                                    | $1s^22s2p3d$                         | 11.881(                   | 12.5 )                        | $193_{-133}$<br>$140^{+143}$            |
| 11.0700+0.0050                           | 0.00+9.96                     | $2.0c^{\pm 1.24}$        | 16 1           | (                      | Fe XXI                     | $1s^2 2s^2 2p^2$                                  | 1s <sup>2</sup> 2s2p2p3j             | 11.894                    | 3.(3)                         | $\frac{-142_{-133}}{105^{+125}}$        |
| $11.9700_{-0.0000}$                      | $0.00^{-0.00}$                | $-5.00_{-1.21}$          | 10.1           |                        | re XXI                     | <u>1s<sup>2</sup>2s<sup>2</sup>2p<sup>2</sup></u> | 1s <sup>2</sup> 2s2p <sup>2</sup> 3p | 11.9730                   | $(3.09) \leftarrow$           | $\frac{-123_{-0}}{191^{+30}}$           |
| $12.0440^{+0.0012}_{-0.0040}$            | $0.03\substack{+9.49\\-0.03}$ | $3.71^{+1.74}_{-1.70}$   | 13.0           |                        | Ca XX                      | 2p                                                | 4d                                   | 12.040;                   | (2.70)                        | $-121_{-100}$<br>188 $+30$              |
|                                          |                               |                          |                | (                      | Са лл                      | 28                                                | 4p                                   | 12.051                    | 0.55                          | $\frac{-100-100}{141^{+149}}$           |
| $12.0695^{+0.0060}$                      | 18 34+13.45                   | $5.23^{+2.31}$           | 17.0           | (                      | Fe XXI                     | 1s 2s2p<br>$1s^2 2s2p^3$                          | 1s 2s2p3a<br>$1s^22s2p3a$            | 12.075.<br>12.076/        | 9.55<br>3.49                  | $^{-141}$ $^{-146}$ $^{-171}$ $^{+149}$ |
| 12.0050 - 0.0059                         | 10.04-9.07                    | $0.20_{-2.12}$           | 11.0           |                        | Fe xx                      | $2s^2n^4$                                         | $2n2n^3 2n$                          | 12.070                    | 2.58                          | $-37^{+149}$                            |
| $121141^{+0.0014}$                       | $1.72^{+9.08}$                | $-4.09^{+1.08}$          | 45.2           | (                      | Fe XVII                    | 232p<br>2s <sup>2</sup> 2n <sup>6</sup>           | $2p2p \ 5p$<br>$2s^2 2p^5 4d$        | 12.071                    | $4 83 \rightarrow \leftarrow$ | $-244^{+35}$                            |
|                                          | +2.02                         | 1.00-1.07                | 10.2           | (                      | Ne x                       | <u>1s</u>                                         | 25 2p 40                             | 12.1321                   | $6.16 \rightarrow \leftarrow$ | $-84^{+30}$                             |
| $12.1287^{+0.0012}_{-0.0009}$            | $19.38^{+3.03}_{-2.59}$       | $-18.90^{+1.59}_{-1.85}$ | 736.5          | $\left  \right\rangle$ | Ne x                       | <u></u><br>1s                                     | -r<br>2p                             | 12.1375                   | 6.16                          | $-218^{+30}$                            |
|                                          |                               | - · · +2 16              |                |                        | Ni xx                      | $2s^2 2p^5$                                       | $2s^22p^43d$                         | 12.156                    | 3.37                          | $-64^{+112}_{-117}$                     |
| $12.1540_{-0.0048}^{+0.0045}$            | $12.60^{+11.03}_{-12.60}$     | $5.40^{+2.10}_{-2.12}$   | 21.4           |                        | Fe xx                      | $\frac{1}{2s2p^4}$                                | $2p2p^33p$                           | 12.150'                   | 1.98                          | $81^{+112}_{-117}$                      |
| 10 10 47 +0 0034                         | 0.15+11.41                    | 0.15+1.72                | 0.0            | (                      | Fe XXI                     | $1s^2 2s 2p^3$                                    | $1s^22s2p^23d$                       | 12.191'                   | 6.59)                         | $-176^{+83}_{-92}$                      |
| $12.1845_{-0.0037}$                      | $2.15_{-2.15}$                | $3.15_{-1.78}$           | 9.9            | ÌÌ                     | Fe XXI                     | $1s^2 2s 2p^3$                                    | $1s^22s2p2p3a$                       | 12.193                    | 3.99                          | $-228_{-92}^{+83}$                      |
|                                          |                               |                          |                | Ì                      | Fe XXI                     | $1s^22s2p^3$                                      | $1s^22s2p2p3\epsilon$                | 12.204(                   | 8.54)                         | $256^{+143}_{-149}$                     |
| $12.2144_{-0.0061}^{+0.0058}$            | $15.87^{+16.52}_{-10.32}$     | $5.07^{+2.41}_{-2.25}$   | 16.2           |                        | Fe XXII                    | $1s^2 2s 2p^2$                                    | $1s^2 2s 2p 3d$                      | 12.210(                   | 8.24                          | $109^{+143}_{-149}$                     |
|                                          |                               |                          |                |                        | Fe XXI                     | $1s^2 2s 2p^3$                                    | $1s^22s2p2p3a$                       | 12.209                    | 6.40                          | $131^{+\bar{1}\bar{4}\bar{3}}_{-149}$   |
| $12.2523^{+0.0027}_{-0.0023}$            | $0.07^{+13.90}_{-0.07}$       | $-4.27^{+1.25}_{-1.21}$  | 26.3           |                        | Fe xxII                    | $1s^2 2s^2 2p$                                    | $1s^2 2s^2 3s$                       | 12.2519                   | $0.91 \leftarrow$             | $11^{+65}_{-57}$                        |
| $12.2\overline{650^{+0.0025}_{-0.0011}}$ | $0.32_{-0.32}^{+7.58}$        | $-5.38^{+1.04}_{-1.23}$  | 61.8           |                        | Fe xvii                    | $2s^2 2p^6$                                       | $2s^22p^54d$                         | 12.2660                   | $4.21 \leftarrow$             | $-24^{+60}_{-26}$                       |
| $12.2821_{-0.0008}^{+0.0012}$            | $12.49^{+2.02}_{-4.46}$       | $-14.47^{+1.39}_{-0.98}$ | 467.7          | (                      | Fe XXI                     | $1s^2 2s^2 2p^2$                                  | $1s^2 2s^2 2p3d$                     | 12.2840                   | $18.2$ ) $\leftarrow$         | $-46^{+30}_{-20}$                       |

| Table A III.1: | List of lir | es in the    | 'non-dip' | spectrum - so | orted by y | vavelength   | (continued) |
|----------------|-------------|--------------|-----------|---------------|------------|--------------|-------------|
| 10010 1111111  | HIGO OF III | ioo iii oiio | mon anp   | spectrum be   | noa oj i   | i ai orongen | (comunaca)  |

|                                      | $\lambda$ FWH                         | M EW $\Delta \chi$       | <sup>2</sup> i | on                     | transitio                | n $\lambda_0$                 | $A_{ji} \mid \Delta$             | $\lambda/\lambda \cdot c$ |                         |                                        |
|--------------------------------------|---------------------------------------|--------------------------|----------------|------------------------|--------------------------|-------------------------------|----------------------------------|---------------------------|-------------------------|----------------------------------------|
|                                      | [A] [mA]                              | [mA]                     |                |                        | i j                      | $[A]10^{12}$                  | s <sup>-1</sup> ]                | [km/s]                    |                         | 199                                    |
| $12.3150^{+0.0050}_{-0.0000}$        | $0.00^{+10.08}_{-0.00}$               | $-2.24^{+1.41}_{-1.28}$  | 7.2            |                        | Fe XXI                   | $1s^2 2s 2p^3$                | $1s^22p2p^23p$                   | 12.3182                   | 3.37                    | $-78^{+122}_{-0}$                      |
| -0.0000                              | -0.00                                 | -1.38                    |                | (                      | Fe XX                    | $2s^2 2p^3$                   | $2s2p2p^23p$                     | 12.3244                   | 2.34 )                  | $-229^{+122}_{-0}$                     |
|                                      |                                       |                          |                |                        | Fe XXI                   | $1s^2 2s 2p^3$                | $1s^2 2s 2p^2 3d$                | 12.4650                   | 26.9 )                  | $242_{-219}^{+101}$                    |
| $12.4757^{+0.0081}_{-0.0091}$        | $25.87^{+14.56}_{-10.57}$             | $6.15^{+2.90}_{-2.68}$   | 16.0           | (                      | Fe XXI<br>Fe XXI         | $1s^2 2p^4$                   | $1s^2 2p^3 3d$                   | 12.403.<br>19.479(        | 14.0 )                  | $502_{-219}$                           |
|                                      |                                       |                          |                |                        | Fe XXI<br>Fe XXI         | $1s^2 2s 2p^3$                | $1s^2 2s 2p^2 3d$                | 12.4720                   | 9.00                    | $14_{-218}$<br>$106^{+194}$            |
|                                      |                                       |                          |                | (                      | Fe XX                    | $1s 2s2p^{-1}$                | 1s 2p2p 3p                       | 12.407                    | 4.30                    | $\frac{190_{-219}}{227^{+104}}$        |
| $12.5661^{+0.0044}_{-0.0046}$        | $3.97^{+19.79}_{-3.97}$               | $-3.56^{+1.46}_{-2.27}$  | 15.9           | $\left  \right\rangle$ | ге лл<br>Бе хх           | $\frac{2s}{2s^2 2p^3}$        | 2s2p2p 3p<br>$2s2n^33n$          | 12.5760<br>12.5760        | (4.39)                  | $-237_{-111}$<br>$-237^{+104}$         |
|                                      | 10.40                                 | 10.05                    |                |                        | Fe xx                    | $\frac{23 2p}{2s^2 2n^3}$     | $2s2p \ 3p$<br>$2s2n2n^2 3n$     | 12.5760<br>12.5760        | $(4.39) \leftarrow$     | $\frac{201-111}{120+79}$               |
| $12.5810^{+0.0033}_{-0.0042}$        | $11.62^{+12.40}_{-11.62}$             | $-5.68^{+2.07}_{-2.15}$  | 31.6           | $\left  \right\rangle$ | Fe XX                    | $\frac{2s^2 2p}{2s^2 2p^3}$   | $2s2p2p \ op$<br>$2s2p^{3}3p$    | 12.5760                   | 4.44                    | $120_{-99}^{-99}$<br>$120_{-79}^{+79}$ |
| 10.0045                              | . 17 14                               | 1 1 0 8                  |                | $\hat{(}$              | Ca XVIII                 | $\frac{1s^2 2s}{1s^2}$        | $1s^25n$                         | 12.636(                   | 0.54                    | $-301^{+106}_{-301}$                   |
| $12.6233_{-0.0033}^{+0.0043}$        | $0.04^{+17.14}_{-0.04}$               | $3.44^{+1.98}_{-1.94}$   | 8.3            | Ì                      | Ca XVIII                 | $\frac{1s^2 2s}{1s^2 2s}$     | $1s^25p$                         | 12.636(                   | 0.54                    | $-301^{+106}_{-78}$                    |
|                                      |                                       |                          |                |                        | Fe XXI                   | $1s^2 2p^4$                   | $1s^22p2p^23d$                   | 12.673(                   | 3.97                    | $\frac{-73}{245^{+294}_{-314}}$        |
| $12.6834_{-0.0133}^{+0.0124}$        | $43.24_{-43.24}^{+0.04}$              | $7.78^{+3.35}_{-3.32}$   | 14.9           |                        | Fe XXI                   | $1s^{2}2p^{4}$                | $1s^22p2p^23d$                   | 12.689(                   | 2.00                    | $-147^{+294}_{-314}$                   |
|                                      |                                       |                          |                |                        | Fe xx                    | $2s2p^4$                      | $2s2p^33d$                       | 12.688                    | 1.34                    | $-121_{-314}^{+294}$                   |
| $128099^{+0.0001}$                   | $0.02^{+14.55}$                       | -5 44+1.28               | 58.1           | (                      | Ni xx                    | $2s^2 2p^5$                   | $2s^2 2p^4 3s$                   | 12.8122                   | 1.10 )                  | $-55^{+2}_{-116}$                      |
| 12.0055-0.0050                       | 0.02 - 0.02                           | -0.44_2.67               | 00.1           |                        | Fe xx                    | $2s2p^4$                      | $2s2p^22p3d$                     | 12.8084                   | 0.83                    | $35^{+2}_{-116}$                       |
| $12.8281^{+0.0012}$                  | $18\ 73^{+4.33}$                      | $-17\ 49^{+2.14}$        | 393 4          | (                      | Fe xx                    | $2s^22p^3$                    | $2s^22p2p3d$                     | 12.8240                   | $17.1$ ) $\leftarrow$   | $95^{+29}_{-37}$                       |
| 12.0201-0.0016                       | 10.10_3.22                            | 11.10-2.24               | 000.1          |                        | Fe xx                    | $2s^2 2p^3$                   | $2s^22p2p3d$                     | 12.8270                   | 4.90                    | $25^{+29}_{-37}$                       |
| $12.8500^{+0.0016}_{-0.0021}$        | $0.36^{+13.32}_{-0.25}$               | $-7.08^{+1.38}_{-1.24}$  | 79.7           | (                      | Fe xx                    | $\frac{2s^2 2p^3}{2s^2 2p^3}$ | $2s^22p2p3d$                     | 12.8460                   | $19.2 \rightarrow $     | $92^{+38}_{-48}$                       |
|                                      | -0.35                                 | -1.24                    |                | (                      | Fe XX                    | $\frac{2s^2 2p^3}{2s^2 2p^3}$ | $2s^22p2p3d$                     | 12.8640                   | 12.1 )                  | $-327^{+38}_{-48}$                     |
| $12.9023^{+0.0050}_{-0.0033}$        | $17.65^{+17.25}_{-9.52}$              | $-8.60^{+2.17}_{-3.70}$  | 55.7           |                        | Fe XX                    | $2s2p^4$                      | $2s2p2p^23d$                     | 12.9010                   | 11.4                    | $31^{+11}_{-77}$                       |
|                                      | - 3.32                                | -3.10                    |                |                        | Fe XX                    | 2s2p <sup>4</sup>             | $2s2p2p^23d$                     | 12.9030                   | 7.58                    | $\frac{-15}{-77}$                      |
| $12.9200^{+0.0025}_{-0.0000}$        | $0.01^{+21.12}_{-0.01}$               | $-4.74^{+1.42}_{-1.43}$  | 30.6           | (                      | Fe XX<br>Fe XX           | $\frac{2s^2 2p^3}{2s^2 2p^3}$ | $2s^22p2p3d$                     | 12.9120<br>12.0011        | $4.92 \rightarrow 6.74$ | $180_{-1}$<br>$25^{+59}$               |
|                                      |                                       | _                        |                | (                      | ге лл<br>Бо хіх          | $\frac{2s^2 2p^3}{2s^2 2p^3}$ | 2s <sup>2</sup> 2p2p3d           | 12.9211                   | 3.11 ) /                | $\frac{-23_{-1}}{204^{+58}}$           |
| $12.9538^{+0.0025}$                  | $14.50^{+8.23}$                       | $-9.91^{+2.29}$          | 80.3           | $\left  \right\rangle$ | Fe XX                    | $\frac{2s}{2s^2 2n^3}$        | $2s2p2p^{-}3p$<br>$2s^{2}2n2n3d$ | 12.9450<br>12.9650        | $3.11) \leftarrow 3.46$ | $-259^{+58}$                           |
| 12.0000 - 0.0026                     | 11.00-5.82                            | 0.01-2.52                | 00.0           | $\hat{i}$              | Fe xx                    | $\frac{23}{2s^2 2n^3}$        | $2s^2 2p^2 p^3 d$                | 12.9654                   | $0.10^{\circ}$          | $-268^{+58}$                           |
|                                      |                                       |                          |                | (                      | Fe xx                    | $\frac{25 \ 2p}{2n^5}$        | $2n^43d$                         | 13.0238                   | 14.1                    | $\frac{208-61}{113+78}$                |
| $13.0287^{+0.0034}_{-0.0043}$        | $14.32^{+11.36}_{-14.32}$             | $-6.46^{+2.41}_{-2.05}$  | 27.9           | Ì                      | Fe xx                    | $2s2p^4$                      | $2s2p2p^23d$                     | 13.0328                   | 6.60                    | $-94_{-98}^{+78}$                      |
| -0.0043                              | -14.52                                | -2.05                    |                |                        | Fe xx                    | $2s2p^4$                      | $2s2p^33d$                       | 13.0281                   | 3.49                    | $14_{-98}^{+78}$                       |
| $13.0522^{+0.0051}_{-0.0031}$        | $11.16^{+13.73}_{-11.16}$             | $-5.76^{+1.90}_{-2.52}$  | 25.0           | (                      | Fe xx                    | $2s^2 2p^3$                   | $2s^22p^23d$                     | 13.0610                   | $2.62) \leftarrow$      | $-203^{+116}_{-71}$                    |
| $13.0725^{+0.0299}$                  | $0.00^{+50.42}$                       | $1.77^{+2.22}$           | 2.2            | (                      | Fe xx                    | $2s2p^4$                      | $2s2p2p^23d$                     | $12.920_{-}$              | 0.78 )                  | $3529^{+693}_{-693}$                   |
| 10.0120_0.0299                       | 0.00_0.00                             | 1.11 -1.77               | 2.2            | (                      | Fe xx                    | $\underline{2s^2 2p^3}$       | $2s^22p2p3d$                     | 12.921                    | 0.74 )                  | $3513^{+693}_{-693}$                   |
|                                      |                                       |                          |                | (                      | Fe xx                    | $2s2p^4$                      | $2s2p2p^23d$                     | 13.084:                   | 24.9 )                  | $711_{-484}^{+484}$                    |
|                                      |                                       |                          |                |                        | Fe XX                    | $2s^2 2p^3$                   | $2s^22p^23d$                     | 13.087:                   | 15.1                    | $642_{-484}^{+434}$                    |
|                                      |                                       |                          |                | (                      | Fe XX                    | $2s^2 2p^3$                   | $2s^22p^23d$                     | 13.0884                   | 13.9 )                  | $615_{-484}$                           |
|                                      |                                       |                          |                | (                      | Fe XX                    | $2s2p^{+}$                    | $2s2p^{\circ}3d$                 | 13.095                    | 12.4                    | $454_{-484}$<br>505 $^{+484}$          |
| $13.1152^{+0.0211}_{-0.0211}$        | $34.47^{+15.95}_{-34.47}$             | $4.51_{-3.94}^{+3.75}$   | 8.6            | (                      | ге лл<br>Бо хх           | $2s^2 2p^3$                   | $2s^22p^23d$                     | 13.095.                   | 6.76                    | $303_{-484}$<br>$340^{+484}$           |
|                                      |                                       |                          |                |                        | Fe XX                    | 2s 2p<br>$2n^5$               | 2s 2p 3a                         | 13.100(                   | 5.35                    | $26^{+483}$                            |
|                                      |                                       |                          |                |                        | Fe xx                    | $2s2n^4$                      | $2s2p^{3}3d$                     | 13.124                    | 4.38                    | $-209^{+483}_{-209}$                   |
|                                      |                                       |                          |                |                        | Fe xx                    | $2p^5$                        | $2p2p^33d$                       | 13.129                    | 3.08                    | $-333^{+483}_{482}$                    |
|                                      |                                       |                          |                | (                      | Fe xx                    | $2s^22p^3$                    | $2s^22p2p3d$                     | 13.137(                   | 2.80)                   | $-497_{-482}^{-483}$                   |
|                                      |                                       |                          |                | ,                      | Fe xx                    | $2s^2 2p^3$                   | $2s^22p2p3d$                     | 13.1370                   | 2.80                    | $29^{+101}_{-75}$                      |
| $13.1383^{+0.0044}_{-0.0033}$        | $0.02^{+17.29}_{-0.02}$               | $-3.19^{+1.95}_{-2.03}$  | -1.1           |                        | ${\rm Fe} \ {\rm xviii}$ | $2s2p^6$                      | $2p^22p^43p$                     | 13.1427                   | 1.95                    | $-101^{+101}_{-74}$                    |
|                                      |                                       |                          |                | (                      | Fe xx                    | $2s2p^4$                      | $2s2p2p^23d$                     | 13.1458                   | 1.82 )                  | $-172^{+101}_{-74}$                    |
| $13.1500^{+0.0000}_{-0.0050}$        | $0.00^{+11.56}_{-0.00}$               | $7.94^{+2.32}_{-2.37}$   | 28.1           | (                      | Fe xviii                 | $2s2p^6$                      | $2p^2 2p^4 3p$                   | 13.142'                   | 1.95 )                  | $167^{+0}_{-114}$                      |
|                                      |                                       | -2.27                    | -              |                        | Fe xx                    | $2s2p^4$                      | $2s2p2p^23d$                     | 13.145                    | 1.82                    | $96^{+0}_{-114}$                       |
|                                      |                                       |                          |                |                        | Fe XX                    | $2s2p^4$                      | $2s2p^33d$                       | 13.1521                   | 6.12<br>2.05            | $65_{-113}^{+1}$                       |
| $13.1550\substack{+0.0001\\-0.0050}$ | $0.00^{+12.15}_{-0.00}$               | $-5.43^{+1.91}_{-2.13}$  | 31.6           |                        | re aa<br>Fe vv           | $2s2p^{+}$                    | $2s2p2p^{-3d}$                   | 13.1547                   | 3.80                    | $^{0}_{/5^{+1}}$                       |
|                                      |                                       |                          |                |                        | Fe xx                    | $2s 2p^2$<br>$2s^2 2n^3$      | 2s 2p2p3d<br>$2s^2 2p2p3d$       | $13\ 1530$                | 2.12                    | $45^{-113}_{45^{+1}}$                  |
| $13.4202^{+0.0043}$                  | $9.72^{+16.28}_{-0.72}$               | $-4.08^{+1.57}$          | 25.2           |                        | Fe XIX                   | $\frac{25 2p}{2s^2 2n^4}$     | $2s^2 2p^2 p^3 3d$               | 13.4230                   | 5.01 ←                  | $\frac{-10-113}{-61+97}$               |
| $13.4403^{+0.0020}$                  | $19.29^{+4.08}$                       | $-18.54^{+2.47}$         | 301.1          | (                      | Ne IX                    | 1s <sup>2</sup>               | 1s2p                             | 13.4473                   | 8.87 ) ←                | $-155^{+45}$                           |
| $13.4647^{+0.0030}_{-0.0025}$        | $20.44^{+8.49}_{-0.00}$               | -11.81+3.60              | 68.4           |                        | Fe xix                   | $2s^2 2p^4$                   | $2s^2 2p^3 3d$                   | 13.4620                   | $14.1 \leftarrow$       | $\frac{61^{+66}}{61^{+66}}$            |
| $13.5026^{+0.0019}_{-0.0016}$        | $\frac{-9.09}{17.55^{+4.32}_{-4.83}}$ | $-17.72^{+2.57}_{-2.10}$ | 241.5          | (                      | Fe xix                   | $\frac{1}{2s^2 2p^4}$         | $2s^22p2p^23d$                   | 13.4970                   | 12.9 ) ←                | $125_{-26}^{+41}$                      |
| 12 5051+0.0014                       | 10 4 4+7.45                           | 10 00+2.47               | 00 -           | (                      | Fe xix                   | $2s^2 2p^4$                   | $2s^2 2p^3 3d$                   | 13.5180                   | 18.7 ) <i>←</i>         | $\frac{-30}{156^{+31}_{-67}}$          |
| $13.5251_{-0.0030}$                  | $10.44_{-6.78}$                       | $-10.90^{+2.11}_{-1.82}$ | 88.5           | Ì                      | Fe xix                   | $2s^22p^4$                    | $2s^22p2p^23d$                   | 13.5146                   | 1.21 )                  | $232_{-67}^{+31}$                      |
| $13.6279_{-0.0062}^{+0.0055}$        | $5.84^{+22.03}_{-5.84}$               | $-5.06^{+2.45}_{-3.41}$  | 14.5           |                        |                          |                               |                                  |                           |                         |                                        |
| $13.6501\substack{+0.0061\\-0.0055}$ | $20.29^{+19.29}_{-10.10}$             | $-8.11^{+3.14}_{-3.48}$  | 22.3           |                        | Fe XIX                   | $2s^22p^4$                    | $2s^2 2p^3 3d$                   | 13.6450                   | $2.43 \leftarrow$       | $112^{+135}_{-122}$                    |
| $13.6657^{+0.0069}_{-0.0057}$        | $0.23^{+47.54}_{-0.23}$               | $-3.38^{+2.04}_{-2.72}$  | 7.3            |                        |                          |                               |                                  |                           |                         |                                        |

Table A III.1: List of lines in the 'non-dip' spectrum – sorted by wavelength (continued)

|                                      | $\lambda$ FWHM                 | M EW $\Delta \chi^2$             | <sup>2</sup> ic | m | transition | n $\lambda_0$                             | $A_{ji} \mid \Delta$ | $\Delta\lambda/\lambda\cdot c$ |                               |                      |
|--------------------------------------|--------------------------------|----------------------------------|-----------------|---|------------|-------------------------------------------|----------------------|--------------------------------|-------------------------------|----------------------|
|                                      | [Å] [mÅ]                       | [mÅ]                             |                 |   | $i \ j$    | $[Å]10^{12}$                              | $^{2}s^{-1}$ ]       | [km/s]                         |                               |                      |
| $13.7551_{-0.0049}^{+0.0099}$        | $0.02^{+47.63}_{-0.02}$        | $-4.74^{+2.67}_{-2.62}$          | 8.4             | ( | Fe xx      | $\underline{2s^2 2p^3}$                   | $2s^2 2p^2 3s$       | 13.7670                        | $1.02$ ) $\leftarrow$         | $-259^{+215}_{-108}$ |
| $13.7914\substack{+0.0116\\-0.0058}$ | $26.00^{+24.00}_{-19.82}$      | $-9.25_{-4.96}^{+4.05}$          | 17.8            |   | Fe xix     | $\frac{2s^22p^4}{2s^2}$                   | $2s^22p2p^23d$       | 13.7950                        | $5.35 \leftarrow$             | $-78^{+252}_{-126}$  |
|                                      |                                |                                  |                 |   | Fe xix     | $2s^22p^4$                                | $2s^22p^22p3d$       | 13.8390                        | $1.75 \leftarrow$             | $-155^{+190}_{-185}$ |
| $13.8318_{-0.0085}^{+0.0088}$        | $28.25^{+17.58}_{-20.33}$      | $-9.17^{+5.40}_{-3.95}$          | 15.6            | ( | Fe xx      | $2s^22p^3$                                | $2s^22p^23s$         | 13.8430                        | 1.00 )                        | $-242^{+190}_{-185}$ |
|                                      |                                |                                  |                 |   | Fe xvii    | $2s^2 2p^6$                               | $2s2p^63p$           | 13.8250                        | 3.40                          | $148^{+190}_{-185}$  |
|                                      |                                |                                  |                 | ( | Fe xviii   | $2s^2 2p^5$                               | $2s^22p2p^33d$       | 14.2080                        | $17.9$ ) $\leftarrow$         | $-148^{+62}_{-71}$   |
| $14.2010_{-0.0034}^{+0.0029}$        | $26.41_{-7.78}^{+8.47}$        | $-21.96^{+4.77}_{-4.27}$         | 142.4           | ( | Fe xviii   | $\underline{2s^2 2p^5}$                   | $2s^22p^43d$         | 14.2080                        | 19.4 )                        | $-148^{+62}_{-71}$   |
|                                      |                                |                                  |                 |   | Fe xviii   | $2s2p^6$                                  | $2s2p^22p^33d$       | 14.2007                        | 13.5                          | $6^{+62}_{-71}$      |
| 14 2525+0.0043                       | $10.00^{+13.77}$               | $11  44^{+2.84}$                 | 41.6            |   | Fe xviii   | $\underline{2s^2 2p^5}$                   | $2s^22p^43d$         | 14.2560                        | $12.9 \leftarrow$             | $-74^{+91}_{-65}$    |
| 14.2020_0.0031                       | $10.00_{-10.00}$               | -11.44-4.96                      | 41.0            |   | Fe xviii   | $2s^2 2p^5$                               | $2s^22p2p^33d$       | 14.2560                        | 1.29                          | $-74^{+91}_{-65}$    |
| $14.3700^{+0.0100}_{-0.0050}$        | $0.00^{+26.25}_{-0.00}$        | $-4.49^{+2.94}_{-3.95}$          | 6.3             |   | Fe xviii   | $\underline{2s^2 2p^5}$                   | $2s^22p^43d$         | 14.3730                        | $6.75 \leftarrow$             | $-62^{+209}_{-104}$  |
| $14.5301\substack{+0.0099\\-0.0001}$ | $0.00\substack{+75.00\\-0.00}$ | $-5.97\substack{+3.07 \\ -3.02}$ | 10.1            |   | Fe xviii   | $2s^2 2p^5$                               | $2s^22p^43d$         | 14.5340                        | $4.05 \leftarrow$             | $-81^{+204}_{-2}$    |
| 14 6240+0.0048                       | 5.02+18.37                     | o oo+2.78                        | 97.1            | ( | Fe xviii   | $2s^2 2p^5$                               | $2s^22p^43d$         | 14.6160                        | 0.95 )                        | $164^{+98}_{-72}$    |
| $14.0240_{-0.0035}$                  | $5.02_{-5.02}$                 | -0.00_3.38                       | 21.1            | ( | Fe xix     | $2s^2 2p^4$                               | $2s^2 2p^3 3s$       | 14.6359                        | 0.11 )                        | $-244^{+98}_{-72}$   |
|                                      |                                |                                  |                 | ( | Fe xviii   | $2s2p^6$                                  | $2s2p^22p^33d$       | 14.7260                        | 11.8 )                        | $-224^{+71}_{-88}$   |
| $14.7150^{+0.0035}_{-0.0043}$        | $0.85^{+19.30}_{-0.85}$        | $10.14^{+4.76}_{-4.15}$          | 15.2            | ( | Fe XIX     | $2s2p^5$                                  | $2s2p2p^33s$         | 14.7200                        | 1.30 )                        | $-114^{+71}_{-88}$   |
|                                      |                                |                                  |                 |   | Fe xx      | $2s2p^4$                                  | $2s^22p2p3p$         | 14.711                         | 0.015                         | $73^{+71}_{-88}$     |
| $15.0033^{+0.0058}_{-0.0026}$        | $13.76^{+9.96}_{-13.75}$       | $-13.12^{+3.16}_{-4.82}$         | 42.4            |   | ( Fe XVII  | $2s^22p^6$                                | $2s^2 2p^5 3d$       | 15.0140                        | 27.0 ) ←                      | $-214^{+116}_{-51}$  |
| $15.1721 \pm 0.0082$                 | $0.03^{+40.38}$                | 4 71+3.24                        | 57              |   | O VIII     | $\underline{1s}$                          | 4p                   | 15.1760                        | $0.27 \leftarrow$             | $-77^{+161}_{-142}$  |
| 10.1721-0.0072                       | $0.03_{-0.03}$                 | -4.71-5.68                       | 5.1             |   | O VIII     | $\underline{1s}$                          | 4p                   | 15.1765                        | 0.27                          | $-86^{+161}_{-142}$  |
| $15.2551^{+0.0259}_{-0.0259}$        | $0.00^{+26.76}_{-0.00}$        | $-3.28^{+3.28}_{-2.97}$          | 2.5             |   | Fe xvii    | $2s^22p^6$                                | $2s^2 2p^5 3d$       | 15.2610                        | $5.87 \leftarrow$             | $-117^{+509}_{-509}$ |
| $15.6200^{+0.0200}_{-0.0051}$        | $0.31^{+74.69}_{-0.31}$        | $-7.54^{+3.31}_{-3.86}$          | 12.9            |   | Fe xviii   | $1  \underline{2s^2 2p^5}$                | $2s^2 2p^4 3s$       | 15.6250                        | 0.87                          | $-96^{+384}_{-98}$   |
|                                      |                                |                                  |                 |   | ( O VIII   | $\underline{1s}$                          | 3p                   | 16.0055                        | $0.67$ ) $\leftarrow$         | $-99^{+96}_{-80}$    |
| $16.0002^{+0.0051}_{-0.0043}$        | $25.00^{+14.56}_{-12.27}$      | $-20.38^{+5.40}_{-6.26}$         | 63.1            |   | ( O VIII   | $\underline{1s}$                          | $_{3p}$              | 16.0067                        | 0.67 )                        | $-120^{+96}_{-80}$   |
|                                      |                                |                                  |                 |   | Fe xviii   | $\begin{bmatrix} 2s^2 2p^5 \end{bmatrix}$ | $2s^22p^43s$         | 16.0040                        | 1.36                          | $-70^{+96}_{-80}$    |
| $16.2411^{+0.0100}$                  | $15.00^{+15.00}$               | $7.05^{+5.09}$                   | 73              |   | (Ca xx     | 2p                                        | 3d                   | 16.2294                        | 8.48 )                        | $217^{+185}_{-92}$   |
| 10.2411_0.0050                       | $15.00_{-15.00}$               | -1.30_7.71                       | 1.5             |   | ( Ca xx    | 2s                                        | $_{3p}$              | 16.2343                        | 3.53 )                        | $127^{+185}_{-92}$   |
| 16 3803+0.0002                       | $75.00^{+0.00}$                | $24.67^{+8.07}$                  | 91.9            |   | Ca xx      | 2p                                        | 3d                   | 16.3716                        | 10.2                          | $324^{+3}_{-363}$    |
| 10.3033_0.0198                       | $15.00_{-19.45}$               | -24.07-10.59                     | 21.2            |   | Ca xx      | 2p                                        | 3d                   | 16.3872                        | 1.70                          | $39^{+3}_{-362}$     |
| $16.7700^{+0.0100}_{-0.0049}$        | $0.00^{+23.84}_{-0.00}$        | $-7.34_{-4.33}^{+5.71}$          | 4.8             |   | Fe xvii    | $\underline{2s^2 2p^6}$                   | $2s^2 2p^5 3s$       | 16.7800                        | $\rightarrow 0.90 \leftarrow$ | $-179^{+179}_{-88}$  |
| $17\ 7495^{+0.0200}$                 | $16.42^{+58.58}$               | $-5.83^{+5.83}$                  | 15              |   | Ar xvi     | $1s^2 2s$                                 | $1s^24p$             | $17.73\overline{20}$           | $0.65 \leftarrow$             | $297^{+338}_{-338}$  |
| -0.0200                              | 10.42 - 16.42                  | -11.86                           | 1.0             |   | Ar xvi     | $1s^22s$                                  | $1s^24p$             | 17.7420                        | 0.65                          | $127^{+338}_{-338}$  |
| $18.6277^{+0.0162}_{-0.0177}$        | $50.00^{+0.00}_{-14.23}$       | $-33.47^{+14.91}_{-11.47}$       | 16.0            |   | O VII      | $\underline{1s^2}$                        | 1s3p                 | 18.6270                        | $0.93 \leftarrow$             | $12^{+261}_{-285}$   |
| $18.7387^{+0.0074}_{-0.0100}$        | $0.05^{+74.95}_{-0.05}$        | $-14.83^{+7.61}_{-7.43}$         | 10.3            |   | Ca xvii    | I $\underline{1s^2 2s}$                   | $1s^2 3p$            | 18.7320                        | $2.36 \leftarrow$             | $107^{+118}_{-160}$  |
| 18 0204+0.0306                       | 55 02+90.91                    | 55 11+18.40                      | 90 1            |   | O VIII     | $\underline{1s}$                          | 2p                   | 18.9671                        | $2.52 \leftarrow$             | $-438^{+483}_{-149}$ |
| 10.9394_0.0094                       | 00.92-22.72                    | -55.11_116.4                     | 0 30.1          |   | ( O VIII   | <u>1s</u>                                 | 2p                   | 18.9725                        | 2.52 )                        | $-523^{+483}_{-149}$ |







(b) 3...5 Å range of the 'non-dip' Cyg X-1 spectrum



(c) 5...7 Å range of the 'non-dip' Cyg X-1 spectrum







(f) 11...13 Å range of the 'non-dip' Cyg X-1 spectrum





(h) 15...17 Å range of the 'non-dip' Cyg X-1 spectrum





#### **III.3** Dependencies of the continuum-parameters

In Section 4.3.2 (page 88), the dependence of the best fit parameters on **A**) a (fixed) given value of  $\Gamma$  was investigated, as well as the dependence on **B**) the wavelength range used for fitting, in order to justify the introduction of a new model for the continuum, namely a two component (partial covered) photoabsorbed power law with pile-up reduction (model 4.6) for the 'dip' spectrum.

#### The 'non-dip' spectrum: A) $\Gamma$ -dependence



Figure A III.7: The 'non-dip' spectrum:  $\Gamma$ -dependence for both models' fit parameteres (rebinned to  $\geq 30$  counts/bin; [1 Å, 20 Å] range noticed).











Figure A III.10: The 'dip' spectrum:  $\Gamma$ -dependence of the 1-comp. model's fit parameters (rebinned to  $\geq 30$  counts/bin; [1 Å, 20 Å] range noticed).



best fit parameters of the 'dip' spectrum for given  $\Gamma$  (and with fixed  $\beta$ )

Figure A III.11: The 'dip' spectrum:  $\Gamma$ -dependence of the 2-comp. model's fit parameters (rebinned to  $\geq 30$  counts/bin; [1 Å, 20 Å] range noticed).









The 'dip 1' spectrum: A) Γ-dependence

Figure A III.14: The 'dip 1' spectrum:  $\Gamma$ -dependence of the 1-comp. model's fit parameters (rebinned to  $\geq 30$  counts/bin; [1 Å, 20 Å] range noticed).



best fit parameters of the 'dip 1' spectrum for given  $\Gamma$  (and with fixed  $\beta)$ 

Figure A III.15: The 'dip 1' spectrum:  $\Gamma$ -dependence of the 2-comp. model's fit parameters (rebinned to  $\geq 30$  counts/bin; [1 Å, 20 Å] range noticed).



Figure AIII.17:  $\lambda_2$ -dependence of the 2-comp. model's fit parameters.

For these investigations, the wavelength range  $[\lambda_1 = 1 \text{ Å}, \lambda_2]$  that was considered for the fitting was varied.

Figure A III.16:  $\lambda_2$ -dependence of the 1-comp. model's fit parameters.











The 'dip 2' spectrum: A)  $\Gamma$ -dependence

Figure A III.20: The 'dip 2' spectrum:  $\Gamma$ -dependence of the 1-comp. model's fit parameters (rebinned to  $\geq 30$  counts/bin; [1 Å, 20 Å] range noticed).



best fit parameters of the 'dip 2' spectrum for given  $\Gamma$  (and with fixed  $\beta$ )

Figure A III.21: The 'dip 2' spectrum:  $\Gamma$ -dependence of the 2-comp. model's fit parameters (rebinned to  $\geq 30$  counts/bin; [1 Å, 20 Å] range noticed).









Figure A III.25:  $\lambda_2$ -dependence of the 2-comp. model's fit par. ( $\beta$  fixed).

For these investigations, the wavelength range  $[\lambda_1 = 1 \ \text{Å}, \ \lambda_2]$  that was considered for the fitting was varied. The pile-up scales  $\beta$  have been fixed to the canonical values.

Figure A III.24:  $\lambda_2$ -dependence of the 1-comp. model's fit par. ( $\beta$  fixed).



#### III.4 Spectral analysis of the 'dip' spectrum

In section 4.3.3 (page 95), the absorption lines in the dip spectrum were investigated.

In the same way as in appendix III.2, first the list of all fitted lines is given (Table A III.2), and then the plots of the spectra are shown (Figs. A III.26a–A III.26h, pages 159–166). All further details are given on page 126.

|                                     | $\lambda$ FWH $\begin{bmatrix} \dot{A} \end{bmatrix}$ $\begin{bmatrix} m & \dot{A} \end{bmatrix}$ | $[M EW \Delta [m Å]]$   | $\chi^2$ | i | ion transi         | tion                         | λ <sub>0</sub><br>[Å][1] | $A_{ji}$    | $\Delta \lambda / \lambda$ | $\cdot c$                                           |                 |                                            |
|-------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------|----------|---|--------------------|------------------------------|--------------------------|-------------|----------------------------|-----------------------------------------------------|-----------------|--------------------------------------------|
|                                     |                                                                                                   |                         |          | ( |                    | -                            |                          | 0 8 ]       | 1 5094                     | $\frac{759}{759}$                                   | 1               | $0.81 \pm 511$                             |
| $1.4924\substack{+0.0026\\-0.0032}$ | $0.33^{+11.44}_{-0.33}$                                                                           | $-3.50^{+1.78}_{-2.96}$ | 10.5     | ( | Fe xxvi<br>Fe xxvi | $\frac{1s}{1s}$              | 3p<br>3p                 |             | 1.5024<br>1.5035           | $75.2 \rightarrow \leftarrow$<br>$75.1 \rightarrow$ | -1              | $208_{-648}^{+510}$                        |
| 1 5100+0.0058                       | 15 00+0.00                                                                                        | $c \circ c^{+2.44}$     | 10.1     | ( | Ni xxviii          | 1s                           | 2p                       |             | 1.5304                     | 379 ) ←                                             | -20             | $)49^{+1144}_{-1377}$                      |
| $1.5199_{-0.0070}$                  | $15.00^{+4.46}_{-4.46}$                                                                           | $-6.20_{-2.41}$         | 18.1     | Ì | Ni xxviii          | 1s                           | 2p                       |             | 1.5356                     | 378 )                                               | -30             | $55^{+1140}_{-1372}$                       |
| $1.8521^{+0.0052}_{-0.0046}$        | $9.01^{+11.42}_{-9.01}$                                                                           | $-2.36^{+1.24}_{-1.30}$ | 13.9     |   | Fe xxv             | $1s^2$                       | 1s2p                     | p           | 1.8504                     | 503 <i>←</i>                                        |                 | $280_{-748}^{+839}$                        |
| $1.9405^{+0.0049}_{-0.0032}$        | $23.96^{+17.37}_{-8.89}$                                                                          | $7.67^{+2.18}_{-1.81}$  | 69.3     | ( | Fe                 | Kα                           |                          |             | 1.937(                     | ) ←                                                 |                 | $536_{-492}^{+755}$                        |
| 0.0002                              | 4.40+41.32                                                                                        | 0.00±0.75               | 4.1      | ( | Ca XX              | 1s                           | 2p                       |             | 3.0185                     | 98.6                                                | 27              | $738^{+628}_{-1024}$                       |
| $3.0461^{+0.0000}_{-0.0194}$        | $4.40^{+41.02}_{-4.40}$                                                                           | $-0.92^{+0.16}_{-1.04}$ | 4.1      | Ì | Ca xx              | <u>1s</u>                    | 2p                       |             | 3.0239                     | 98.5 ý                                              | 21              | $196^{+627}_{-1920}$                       |
| $3.3077^{+0.0068}_{-0.0156}$        | $10.02^{+40.03}_{-10.02}$                                                                         | $-1.46^{+0.92}_{-1.76}$ | 7.8      |   |                    |                              |                          |             |                            | ,                                                   | 1               | 1020                                       |
| $3.3545_{-0.0145}^{+0.0055}$        | $0.00\substack{+76.27\\-0.00}$                                                                    | $-0.80^{+0.74}_{-0.69}$ | 3.2      | ( | Ar XVII            | $\underline{1s^2}$           | 1s3p                     | p           | 3.3650                     | 30.0 ) ←                                            | -9              | $939^{+493}_{-1290}$                       |
| $3.7350^{+0.0072}_{-0.0056}$        | $8.89^{+17.25}_{-8.80}$                                                                           | $-1.46^{+0.90}_{-1.07}$ | 7.8      |   | Ar xviii           | <u>1s</u>                    | 2p                       |             | 3.7311                     | 64.7 ←                                              |                 | $313^{+578}_{-450}$                        |
| 0.0051                              | 8.89                                                                                              | 1.07                    |          |   | Ar XVIII           | $\underline{1s}$             | 2p                       |             | 3.7365                     | 64.6                                                | -               | $121^{+378}_{-450}$                        |
| $3.9566^{+0.0031}_{-0.0035}$        | $5.91^{+19.24}_{-5.91}$                                                                           | $-2.42^{+0.96}_{-1.68}$ | 24.0     | ( | Ar XVII            | $1s^2$                       | 1s2p                     | D           | 3.9491                     | $109 \rightarrow ($                                 |                 | $569_{-266}^{+389}$                        |
| $3.9940\substack{+0.0000\\-0.0042}$ | $0.37^{+7.84}_{-0.37}$                                                                            | $-1.83^{+0.82}_{-0.76}$ | 13.3     |   | S XVI              | <u>1s</u>                    | 3p                       |             | 3.9908                     | $10.8 \leftarrow 10.8$                              |                 | $239^{+1}_{-316}$<br>$152^{+1}$            |
| 0.0200                              | 174.07                                                                                            | 0.04                    |          |   | S XVI              | <u>1s</u>                    | 3p                       |             | 3.9920                     | 10.8                                                |                 | $133_{-316}$                               |
| $4.3063^{+0.0200}_{-0.0200}$        | $0.66^{+14.91}_{-0.66}$                                                                           | $-1.41^{+0.94}_{-1.26}$ | 6.0      |   | S xv               | $\frac{1s^2}{2}$             | 1s3p                     | D           | 4.2990                     | $18.3 \leftarrow$                                   |                 | $511^{+1395}_{-1395}$                      |
| $4.7240^{+0.0057}_{-0.0061}$        | $25.65^{+14.98}_{-12.44}$                                                                         | $-4.91^{+1.74}_{-1.86}$ | 29.0     | ( | S XVI              | <u>1s</u>                    | 2p                       |             | 4.7274                     | $40.4 \leftarrow 40.3$                              | -               | $215^{+300}_{-386}$<br>557 <sup>+360</sup> |
| $5.0375^{+0.0050}$                  | $0.00^{+20.22}$                                                                                   | -1 90+0.89              | 11 5     | ( | S XVI              | <u>1s</u><br>1e <sup>2</sup> | 2p                       | 0           | 4.1020<br>5.0387           | 40.3 J<br>66.7 ∠                                    | +               | $-73^{+297}$                               |
| 5.0575_0.0025                       | $0.00_{-0.00}$                                                                                    | -1.99 <sub>-1.16</sub>  | 11.5     |   | S XV               | 1.20                         | 1527                     | p           | 5 1203                     | → 1.00                                              |                 | $\frac{-73}{187^{+147}}$                   |
| $5.1325_{-0.0050}^{+0.0025}$        | $0.00^{+23.18}_{-0.00}$                                                                           | $-2.51^{+1.05}_{-2.07}$ | 14.4     | 1 | (SXV               | $1s^2 2p$<br>$1s^2$          | (aut                     | 1s2s        | 5.1295<br>5.1015           | 0.000                                               | )               | $  187 - 292 \\   1822 + 148 \\ 204 $      |
| $5.1786^{+0.0052}_{-0.0051}$        | $26.07^{+13.21}_{-8.46}$                                                                          | $-6.38^{+1.89}_{-2.08}$ | 36.6     |   | ( S xv             | $1s^2$                       | 2p                       | (autoior    | .) 5.2090                  |                                                     | )               | $-1751^{+299}_{-292}$                      |
| 5 2207+0.0020                       | 10 38+5.13                                                                                        | 10.08+1.74              | 153.3    |   | ( Si XIV           | <u>1s</u>                    |                          | 3p          | 5.2168                     | 6.32                                                | ) ←             | $740^{+117}_{-117}$                        |
| 0.2291_0.0020                       | 19.50-4.34                                                                                        | -10.50_1.82             | 100.0    |   | ( Si XIV           | $\underline{1s}$             |                          | 3p          | 5.2180                     | 6.31                                                | )               | $674^{+117}_{-117}$                        |
| $5.2747^{+0.0198}_{-0.0037}$        | $18.51_{-9.81}^{+35.57}$                                                                          | $-6.24^{+1.93}_{-6.39}$ | 40.3     |   | Si XIII            | $1s^2$                       |                          | 1s5p        | 5.2850                     | 2.17                                                |                 | $-587^{+1125}_{-212}$                      |
| $5.3180^{+0.0031}_{-0.0023}$        | $1.30^{+14.16}_{-1.30}$                                                                           | $-3.08^{+1.20}_{-1.53}$ | 0.0      |   |                    |                              |                          |             |                            |                                                     |                 |                                            |
| $5.4075^{+0.0053}_{-0.0052}$        | $0.05^{+47.10}_{-0.05}$                                                                           | $-1.58^{+1.21}_{-1.88}$ | 4.5      |   | Si XIII            | $\frac{1s^2}{1s^2}$          |                          | 1s4p        | 5.4045                     | 4.30                                                | $\leftarrow$    | $167^{+292}_{-288}$                        |
| $5.6875^{+0.0054}_{-0.0065}$        | $20.66^{+22.18}_{-18.27}$                                                                         | $-4.83^{+1.91}_{-2.43}$ | 24.7     |   | ( Si XIII          | $1s^2$                       |                          | 1s3p        | 5.6805                     | 10.4                                                | $\rightarrow$ ( | $369^{+285}_{-343}$                        |
| $5.7050^{+0.0028}$                  | $0.36^{+12.83}$                                                                                   | $4.53^{+1.51}$          | 29.8     |   | ( Ni XXV           | $\frac{1s^2}{1s^2}$          | $2s^{2}$                 | $1s^22p7d$  | 5.7000                     | 0.040                                               | )               | $233^{+149}_{-116}$                        |
| 0.1000_0.0022                       | 0.00_0.36                                                                                         | 1.00_1.34               | 20.0     |   | ( Ni xxv           | $1s^2$                       | $2s^{2}$                 | $1s^2 2p7s$ | 5.709(                     | 0.000                                               | )               | $-207^{+149}_{-116}$                       |
| 10.0042                             | 16.02                                                                                             | 11.99                   |          |   | ( Ni XXVI          | $1s^2$                       | <u>2s</u>                | $1s^{2}6p$  | $5.800_{-4}$               | 1.33                                                | )               | $-354^{+216}_{-205}$                       |
| $5.7935^{+0.0042}_{-0.0040}$        | $1.66^{+10.02}_{-1.66}$                                                                           | $2.08^{+1.28}_{-1.30}$  | 7.2      |   | Ni xxv             | $1s^{2}$                     | 2s2p                     | $1s^2 2p7p$ | 5.789                      | 0.14                                                |                 | $194^{+216}_{-205}$                        |
|                                     |                                                                                                   |                         |          |   | Ni XXV             | $1s^{2}$                     | 2s2p                     | $1s^2 2p7p$ | 5.793                      | 0.11                                                |                 | $-12^{+210}_{-205}$                        |
|                                     |                                                                                                   | 1.61                    |          |   | Ni XXVI            | I 1s2                        | p                        | 1s5d        | 5.8177                     | 2.4e + 04                                           |                 | $-122^{+521}_{-644}_{+521}$                |
| $5.8153^{+0.0101}_{-0.0125}$        | $18.84_{-18.84}^{+21.80}$                                                                         | $-2.38^{+1.01}_{-1.90}$ | 6.3      |   | Ni XXVI            | $1s^{2}$                     | 2p                       | $1s^27d$    | 5.8177                     | 1.49                                                |                 | $-122^{+321}_{-644}$                       |
|                                     |                                                                                                   |                         |          |   | Ni XXVI            | $1s^{2}$                     | 2p                       | $1s^27d$    | 5.8181                     | 0.24                                                |                 | $-141^{+321}_{-644}$                       |
|                                     |                                                                                                   |                         |          |   | Ni XXVI            | I 1s2                        | p                        | 1s5s        | 5.9064                     | 0.40                                                | 、<br>、          | $170^{+14}_{-367}$                         |
| <b>F</b> 000 <b>F</b> ±0.0003       | 0.00+16.16                                                                                        | $1.40 \pm 1.07$         |          |   | ( Ni XXVI          | I 1s2                        | p                        | 1s5d        | 5.8914                     | 4.1e+04                                             | )               | $932^{+14}_{-368}$                         |
| $5.9097^{+0.0000}_{-0.0072}$        | $0.00^{+10.10}_{-0.00}$                                                                           | $-1.40^{+1.01}_{-1.04}$ | 4.6      |   | ( Ni XXVI          | I 1s2                        | p                        | 1s5d        | 5.8914                     | 3.3e+03                                             | )               | $932_{-368}^{+14}$                         |
|                                     |                                                                                                   |                         |          |   | ( Ni XXVI          | I 1s2                        | p                        | 1s5d        | 5.8944                     | 1.1e+03                                             | )               | $779^{+14}_{-368}$                         |
|                                     |                                                                                                   |                         |          |   | ( Ni XXVI          | I 1s2                        | p                        | 1s5d        | 5.8944                     | 7.1e+03                                             | )               | $779_{-368}^{+14}$                         |
| $6.0442^{+0.0048}_{-0.0045}$        | $14.82^{+10.15}_{-8.86}$                                                                          | $-3.22^{+1.24}_{-1.36}$ | 19.9     |   | ( Al XIII          | $\underline{1s}$             |                          | 3p          | 6.0526                     | 4.70                                                | ) ←             | $-417^{+240}_{-225}$                       |
| -0.0045                             | -0.00                                                                                             | -1.50                   |          |   | ( AI XIII          | $\underline{1s}$             |                          | 3p          | 6.0537                     | 4.69                                                | )               | $-4(1_{-225})$                             |
| $6.1814\substack{+0.0027\\-0.0026}$ | $24.59^{+6.87}_{-6.05}$                                                                           | $-8.83^{+1.52}_{-1.59}$ | 132.5    |   | SI XIV             | $\frac{1s}{1s}$              |                          | 2p          | 0.1804<br>6 1858           | 23.7<br>23.6                                        | $\rightarrow$   | $40^{+130}_{-127}$<br>-216 <sup>+129</sup> |
|                                     |                                                                                                   |                         |          | + |                    | <u>1s</u>                    |                          | 2p          | 6 31/0                     | 20.0                                                | )               | -210 - 127<br>38+332                       |
| $6.3148^{+0.0070}$                  | $14\ 10^{+13.54}$                                                                                 | $-2.35^{+1.23}$         | 1በ የ     |   | ( Ni vvv           | 1 s <sup>-</sup>             | $2n^2$                   | 1.22006-1   | 6 3030                     | 3.64                                                | )               | $-430^{+332}$                              |
| 0.0140-0.0061                       |                                                                                                   | 2.00-1.36               | 10.0     |   | Ni xxv             | 1s<br>1e <sup>2</sup>        | $\frac{2P}{2n^2}$        | 15 ∠poa     | 6 3175                     | 1 91                                                | ,               | $-127^{+332}$                              |
|                                     | 110.17                                                                                            | 11.90                   |          | + | Ni xxv             | 1.02                         | -P<br>2s2n               | $1s^2 2p5a$ | 6.453                      | 1.88                                                |                 | $93^{+183}$                                |
| $6.4552^{+0.0039}_{-0.0052}$        | $0.49^{+10.17}_{-0.49}$                                                                           | $2.45^{+1.38}_{-1.17}$  | 11.9     |   | Ni XXV             | $1s^2$                       | 2s2p                     | $1s^2 2p5p$ | 6.458'                     | 1.39                                                |                 | $-163^{+183}_{-241}$                       |
| $6.6461^{+0.0026}_{-0.0027}$        | $11.50^{+7.78}_{-5.60}$                                                                           | $-5.52^{+1.36}_{-1.58}$ | 65.2     |   | Si XIII            | $1s^2$                       |                          | 1s2p        | 6.6479                     | 37.7                                                |                 | $-81^{+119}_{-120}$                        |

Table A III.2: List of lines in the 'dip' spectrum – sorted by wavelength

|                                     | $\lambda$ FWF<br>[Å] [mÅ] | $M EW \Delta_{j}$ [mÅ]   | $\chi^2$ | ior | transiti $i$      | on $\lambda_0$ [Å]10     | $A_{ji}$<br>$P^{12}s^{-1}$               | $\Delta\lambda/\lambda \cdot c$ [km/s] |              |                 |                                      |
|-------------------------------------|---------------------------|--------------------------|----------|-----|-------------------|--------------------------|------------------------------------------|----------------------------------------|--------------|-----------------|--------------------------------------|
| $c.7042 \pm 0.0009$                 | 0.00+21.23                | 1.00+0.98                | 10.0     | (   | Mg XII            | <u>1s</u>                | 4p                                       | 6.7378                                 | 1.39 ) «     | _               | $-598^{+41}_{-202}$                  |
| $0.7243_{-0.0045}$                  | $0.09^{+}_{-0.09}$        | $-1.90_{-1.18}$          | 10.6     | Ì   | Mg XII            | $\underline{1s}$         | 4p                                       | 6.7382                                 | 1.39 )       |                 | $-617^{+41}_{-202}$                  |
| $6.7426^{+0.0024}_{-0.0010}$        | $1.02^{+6.56}_{-1.02}$    | $6.88^{+1.35}_{-1.44}$   | 79.0     | (   | Si XIII           | $\underline{1s^2}$       | 1s2s                                     | 6.740:                                 | 0.000 ) ↔    | _               | $103^{+106}_{-45}$                   |
| $6.7867^{+0.0020}_{-0.0021}$        | $17.89^{+5.97}_{-4.72}$   | $-7.64^{+1.31}_{-1.41}$  | 134.3    | (   | Si XI             | $K\alpha$                |                                          | 6.8130                                 | ) +          | -               | $-1158_{-92}^{+89}$                  |
| $6.8536^{+0.0016}_{-0.0013}$        | $9.96^{+4.04}_{-9.96}$    | $-6.16^{+1.73}_{-1.00}$  | 154.5    | (   | Si x              | $K\alpha$                |                                          | 6.8820                                 | ) +          | _               | $-1239^{+68}_{-56}$                  |
| $6.8659^{+0.0016}_{-0.0016}$        | $15.57^{+4.95}_{-3.60}$   | $-7.81^{+1.17}_{-1.24}$  | 178.4    | (   | Si x              | $K\alpha$                |                                          | 6.8820                                 | ) +          | -               | $-702^{+70}_{-71}$                   |
| $6.9236^{+0.0014}_{-0.0013}$        | $16.74^{+3.67}_{-3.74}$   | $-10.09^{+1.28}_{-1.22}$ | 274.7    | (   | Si ix             | $K\alpha$                |                                          | 6.9470                                 | ) +          | -               | $-1010^{+60}_{-58}$                  |
| $6.9400^{+0.0025}_{-0.0001}$        | $0.02^{+8.26}_{-0.02}$    | $-4.70^{+0.74}_{-0.67}$  | 107.9    | (   | Si ix             | $K\alpha$                |                                          | 6.9470                                 | ) +          | _               | $-302^{+106}_{-2}$                   |
| $6.9981^{+0.0013}_{-0.0012}$        | $10.87^{+4.53}_{-4.30}$   | $-8.26^{+1.26}_{-1.35}$  | 207.6    | (   | Si viii           | $K\alpha$                | 1                                        | 7.0070                                 | ) +          | _               | $-380^{+58}_{-52}$                   |
| $7.0550^{+0.0003}_{-0.0029}$        | $0.07^{+7.53}_{-0.07}$    | $-3.27^{+0.99}_{-0.90}$  | 32.7     | (   | Si VII            | $K\alpha$                |                                          | 7.0630                                 |              | $\rightarrow$ ( | $-341^{+13}_{-122}$                  |
| $71080^{+0.0047}$                   | $0.21^{+20.25}$           | $-2.05^{+0.99}$          | 11 3     |     | Mg XII            | $\underline{1s}$         | $_{3p}$                                  | 7.1058                                 | 3.41         | $\leftarrow$    | $95^{+196}_{-126}$                   |
| 1.1000_0.0030                       | 0.21_0.21                 | -2.00-1.18               | 11.5     |     | Mg XII            | $\underline{1s}$         | 3p                                       | 7.1069                                 | 3.41         |                 | $47^{+196}_{-126}$                   |
|                                     |                           |                          |          |     | Fe XXIV           | $1s^22s$                 | $1s^{2}5p$                               | 7.1690                                 | 1.71         |                 | $-539^{+1005}_{-1089}$               |
|                                     |                           |                          |          |     | Fe xxiv           | $\frac{1s^2 2s}{2s}$     | $1s^{2}5p$                               | 7.1690                                 | 1.69         |                 | $-539^{+1003}_{-1089}$               |
| $7.1561^{+0.0240}_{-0.0260}$        | $0.01^{+50.42}_{-0.01}$   | $-0.76^{+0.76}_{-1.46}$  | 1.3      |     | Al XIII           | $\underline{1s}$         | 2p                                       | 7.1710                                 | 17.6         |                 | $-623^{+1003}_{-1089}$               |
| -0.0200                             |                           | -1.40                    |          |     | Al XIII           | $\underline{1s}$         | 2p                                       | 7.1764                                 | 17.6         |                 | $-848^{+1004}_{-1088}$               |
|                                     |                           |                          |          |     | Fe XXVI           | 2p                       | 4d                                       | 7.1712                                 | 9.27         |                 | $-631_{-1089}^{+1005}$               |
|                                     |                           |                          |          |     | Fe XXVI           | 2p                       | 4d                                       | 7.1748                                 | 1.54         |                 | $-781_{-1088}$                       |
| $7.1762^{+0.0038}_{-0.0062}$        | $0.01^{+17.29}_{-0.01}$   | $-1.40^{+1.03}_{-1.17}$  | 4.9      |     | AI XIII           | <u>1s</u>                | 2p                                       | 7.1704                                 | 17.0         | $\leftarrow$    | $218_{-259}_{+157}$                  |
| 7 4700+0.0025                       | 0.00+6.59                 | 2 22+0.97                | <u> </u> | 6   | AI XIII<br>Ma XI  | <u>1s</u>                | 2p                                       | 7.1704                                 | 17.0         | ) .             | $-8_{-259}$<br>120 $\pm$ 100         |
| $1.4700_{-0.0000}$                  | $0.00^{+}_{-0.00}$        | -3.23_0.95               | 28.2     |     | Mg XI             | <u>1s²</u>               | 1s4p                                     | 1.4130                                 | 2.24         | $) \leftarrow$  | $-120_{-0}$                          |
| $7.7750^{+0.0171}_{-0.0097}$        | $0.00^{+23.08}_{-19.88}$  | $-2.08^{+2.43}_{-2.90}$  | 0.0      | (   | Al XII            | $\frac{1s^2}{2}$         | 1 <i>s</i> 2 <i>p</i>                    | 7.7573                                 | 27.5         | ) ←             | $684_{-373}^{+002}$                  |
| $7.8024\substack{+0.0057\\-0.0056}$ | $25.11^{+13.65}_{-11.32}$ | $6.32^{+2.28}_{-2.19}$   | 27.4     |     | Al XII<br>Al XII  | $\frac{1s^2}{1s^2}$      | 1s2p<br>1s2p                             | 7.807                                  | 0.082        | $\rightarrow$   | $-175_{-214}$<br>$-55_{-214}^{+217}$ |
| $7.8550^{+0.0040}_{-0.0038}$        | $17.84^{+11.35}_{-8.58}$  | $-5.79^{+1.73}_{-1.79}$  | 40.5     | (   | Mg XI             | $1s^2$                   | 1s3p                                     | 7.8503                                 | 5.43         | ) ←             | $180^{+151}_{-146}$                  |
| $7.8776^{+0.0224}_{-0.0176}$        | $0.02^{+49.98}_{-0.02}$   | $1.07^{+1.36}_{-1.07}$   | 1.7      |     | Al XII            | $\underline{1s^2}$       | 1s2s                                     | 7.872                                  | 0.000        | $\leftarrow$    | $210^{+852}_{-672}$                  |
|                                     |                           |                          |          | (   | Ni XXII           | $2s2n^4$                 | $2s2n^35d$                               | 8.0494                                 | 4.98         | )               | -884 <sup>+505</sup>                 |
| +0.0136                             |                           |                          |          | ÌÌ  | Ni XXIV           | $1s^2 2s 2p^2$           | $1s^2 2s 2p 4d$                          | 7.9965                                 | 4.47         | )               | $1094^{+508}_{-522}$                 |
| $8.0257_{-0.0155}^{+0.0166}$        | $46.64_{-38.22}$          | $-5.00^{+0.10}_{-2.78}$  | 13.0     | ÌÌ  | Ni xxiii          | $1s^2 2s^2 2p^2$         | $\frac{1}{2}$ $1s^2 2s 2p 2p 4$          | p 8.0400                               | 4.11         | )               | $-533^{+505}_{-570}$                 |
|                                     |                           |                          |          | ÌÌ  | Ni xxiv           | $1s^2 2s 2p^2$           | $1s^22s2p4d$                             | 8.0437                                 | 4.10         | ý               | $-674_{-579}^{-579}$                 |
| $8.0706^{+0.0069}_{-0.0006}$        | $0.00^{+17.80}_{-0.00}$   | $2.70^{+1.48}_{-1.44}$   | 9.8      | Ì   | Ni XXIV           | $1s^2 2s 2p^2$           | $1s^22s2p4d$                             | 8.082:                                 | 12.4         | )               | $-434_{-22}^{+257}$                  |
| 010000                              | 0.00                      | 1.11                     |          | Ì   | Mg XII            | <u>1s</u>                | 2p                                       | 8.4192                                 | 12.8         | ,<br>~          | $99^{+\overline{537}}_{-532}$        |
| $8.4220^{+0.0151}_{-0.0149}$        | $42.69^{+0.00}_{-0.00}$   | $-8.28^{+0.00}_{-0.00}$  | 0.0      |     | Mg XII            | $\underline{1s}$         | 2p                                       | 8.4246                                 | 12.8         |                 | $-93^{+537}_{-532}$                  |
|                                     |                           |                          |          | (   | Ni xxiii          | $1s^22s2p^3$             | $1s^2 2s 2p 2p 4$                        | ld 8.4499                              | 4.37         | )               | $-991^{+535}_{-530}$                 |
|                                     |                           |                          |          |     | Ni xx             | $2s^22p^5$               | $2s^22p^45d$                             | 8.6556                                 | 2.81         |                 | $-19^{+546}_{-368}$                  |
|                                     |                           |                          |          |     | Ni xxiii          | $1s^22p^4$               | $1s^22p^22p4d$                           | a 8.6564                               | 3.33         |                 | $-47^{+545}_{-368}$                  |
| $8.6551^{+0.0158}_{-0.0106}$        | $74.76^{+0.59}$           | $-11.31^{+2.62}$         | 24.5     |     | Fe XXI            | $1s^2 2s 2p^3$           | $1s^2 2s 2p^2 5d$                        | ı 8.6582                               | 2.84         |                 | $-106^{+545}_{-368}$                 |
| -0.0106                             | -00.28                    | 3.80                     | -        | (   | Ni XXVII          | 1s2p                     | 1s3d                                     | 8.7069                                 | 1.7e+05      | )               | $-1785^{+342}_{-366}$                |
|                                     |                           |                          |          |     | Ni XXVII          | 1s2p                     | 1s3d                                     | 8.7135                                 | 1.5e+04      | )               | $-2008_{-366}^{+542}$                |
| 0.0011+0.0026                       | <del>7</del> 1 c + 5.39   | $12.20 \pm 3.29$         | 70.0     | (   | N1 XXVII          | 1s2s                     | 1 <i>s</i> 3 <i>p</i>                    | 8.6102                                 | 0.024        | )               | $1503_{-370}$                        |
| $9.2311_{-0.0016}$                  | (.10 - 7.16)              | $13.39_{-2.25}$          | (2.8     | 1   | NIG XI            | <u>1s</u>                | 1s2p                                     | 9.231                                  | 0.034        |                 | $-3_{-52}$                           |
|                                     |                           |                          |          |     | INI XX<br>Fo XVII | $2s2p^{\circ}$           | $2s2p2p^{*}4d$                           | 9.2018                                 | 1.19<br>5.60 |                 | $746^{+120}$                         |
| $9.2860^{+0.0037}_{-0.0034}$        | $21.55^{+10.54}_{-6.45}$  | $-11.18^{+2.62}_{-3.12}$ | 63.7     |     | re aan<br>Ni vv   | $1s^{-}2s2p^{-}$         | $1s^{-}2s^{2}p^{4}d$                     | 9.2030                                 | 5.09<br>4.87 |                 | $608^{+120}$                         |
|                                     |                           |                          |          |     | Ni xxv            | 2s2p<br>$1s^22s2n$       | $2s2p 2p^{-}4a$<br>$1s^{2}2n^{3}n$       | 9.2044                                 | 4.87         |                 | $580^{+120}_{-110}$                  |
| $9.3155^{+0.0029}$                  | $16.62^{+7.32}$           | $13.46^{+3.39}$          | 54.3     |     | Mo XI             | 18 282p                  | 1.020                                    | 9.314:                                 | 0.000        | )               | $36^{+94}$                           |
|                                     |                           |                          | 01.0     | -   | Fe XXII           | $\frac{1}{1s^2 2s 2n^2}$ | $1s^2 2s 2n 4d$                          | 9.3824                                 | 5.12         |                 | $-15^{+62}$                          |
| $0.0010\pm0.0010$                   | 15 10+8 49                | 10 00±9 90               | 1.40.0   | (   | Fe xx             | $2s2p^4$                 | $2p^22p^24p$                             | 9.3797                                 | 0.60         | )               | $71^{+62}_{-66}$                     |
| $9.3819_{-0.0021}^{+0.0019}$        | $15.16_{-4.97}^{+0.42}$   | $-13.22^{+2.29}_{-2.98}$ | 140.6    |     | Fe xx             | $2s2p^{4}$               | $2s2p2p^25d$                             | 9.3833                                 | 0.44         | /               | $-44_{-66}^{+62}$                    |
|                                     |                           |                          |          | (   | Fe xx             | $2s2p^4$                 | $2s2p2p^25d$                             | 9.3797                                 | 0.25         | )               | $72_{-66}^{+62}$                     |
|                                     |                           |                          |          | È   | Fe xxi            | $1s^2 2s^2 2p^2$         | $\frac{1}{2} \frac{1}{1}s^{2}2s^{2}2p4d$ | ı 9.4797                               | 6.12         | ,<br>~          | $-11^{+138}_{-413}$                  |
| $9.4794_{-0.0131}^{+0.0043}$        | $18.05^{+11.98}_{-8.94}$  | $-8.69^{+2.62}_{-2.80}$  | 39.0     |     | Ne x              | <u>1s</u>                | 5p                                       | 9.4807                                 | 0.34         |                 | $-42^{+\bar{1}\bar{3}8}_{-413}$      |
| 0.0101                              | 0.01                      | 2.00                     |          |     | Ne x              | $\underline{1s}$         | 5p                                       | 9.4809                                 | 0.34         |                 | $-48^{+138}_{-413}$                  |
| -                                   |                           |                          |          | (   | Ni xx             | $2s^2 2p^5$              | $2s^22p2p^34d$                           | a 9.4966                               | 10.3         | )               | $124^{+58}_{-100}$                   |
| $9.5006\substack{+0.0018\\-0.0032}$ | $8.34_{-6.69}^{+8.00}$    | $-7.82^{+2.28}_{-2.21}$  | 53.1     | (   | Ni xx             | $2s^22p^5$               | $2s^22p^44d$                             | 9.4966                                 | 6.58         | )               | $124^{+58}_{-100}$                   |
|                                     |                           |                          |          | (   | Fe xxi            | $1s^22s2p^3$             | $1s^2 2s 2p^2 4d$                        | ı 9.4973                               | 1.95         | )               | $103^{+58}_{-100}$                   |

Table A III.2: List of lines in the 'dip' spectrum – sorted by wavelength (continued)

| Table A III.2: List of lines in the | 'dip' | spectrum - sorted | by | wavelength | (continued) |
|-------------------------------------|-------|-------------------|----|------------|-------------|
|-------------------------------------|-------|-------------------|----|------------|-------------|

|                               | $\lambda$ FWE             | IM EW $\Delta \chi$      | 2    | ion transiti | on $\lambda_0$         | $A_{ji}$               | $\Delta\lambda/\lambda\cdot c$ |           |                                       |
|-------------------------------|---------------------------|--------------------------|------|--------------|------------------------|------------------------|--------------------------------|-----------|---------------------------------------|
|                               | [Å] [mÅ]                  | [mÅ]                     |      | i $j$        | $[A]10^{1}$            | $[s^{-1}]$             | [km/s]                         |           |                                       |
|                               |                           |                          |      | Fe XXI       | $1s^{2}2s2p^{3}$       | $1s^2 2s 2p 2p 4d$     | ı 9.5178                       | 4.39      | $-36^{+111}_{-88}$                    |
|                               |                           |                          |      | (Fe XXI      | $1s^{2}2s2p^{3}$       | $1s^2 2s 2p 2p 4d$     | ı 9.5120                       | 4.02)     | $145_{-88}^{+111}$                    |
|                               |                           |                          |      | (Fe XXI      | $1s^2 2s 2p^3$         | $1s^2 2s 2p 2p 4d$     | ı 9.5213                       | 3.29 )    | $-147^{+111}_{-88}$                   |
| $9.5167^{+0.0035}_{-0.0028}$  | $11.68^{+8.57}_{-6.83}$   | $-7.20^{+2.14}_{-2.45}$  | 36.5 | Fe xxi       | $1s^2 2s 2p^3$         | $1s^2 2s 2p 2p 4d$     | ı 9.5146                       | 2.45      | $65^{+111}_{-88}$                     |
|                               |                           |                          |      | Fe xxi       | $1s^{2}2s2p^{3}$       | $1s^2 2s 2p 2p 4d$     | ł 9.5140                       | 2.33      | $83^{+111}_{-88}$                     |
|                               |                           |                          |      | ( Fe XXI     | $1s^{2}2s2p^{3}$       | $1s^2 2s 2p^2 4d$      | 9.5231                         | 2.09 )    | $-201^{+111}_{-88}$                   |
|                               |                           |                          |      | Ni xx        | $2s2p^6$               | $2s2p2p^44d$           | 9.5196                         | 6.21      | $-93^{+111}_{-88}$                    |
|                               |                           |                          |      | Ni xxv       | $1s^22s2p$             | $1s^2 2s 3d$           | 9.6010                         | 17.3      | $-147^{+170}_{-164}$                  |
|                               |                           |                          |      | (Fe XXI      | $1s^2 2s 2p^3$         | $1s^22s2p^24d$         | 9.6059                         | 8.91)     | $-300^{+170}_{-164}$                  |
| $9.5963^{+0.0054}_{-0.0053}$  | $26.43^{+13.15}_{-10.46}$ | $-9.94^{+3.12}_{-3.35}$  | 35.4 | Fe XXI       | $1s^{2}2p^{4}$         | $1s^22p^34d$           | 9.5926                         | 4.75      | $115_{-164}^{+\bar{1}\bar{7}\bar{0}}$ |
|                               |                           |                          |      | Fe xxi       | $1s^2 2s^2 2p^2$       | $1s^22s^22p4d$         | 9.5917                         | 3.77      | $144_{-164}^{+170}$                   |
|                               |                           |                          |      | (Fe XXI      | $1s^{2}2p^{4}$         | $1s^22p^34d$           | 9.5888                         | 3.43 )    | $234_{-165}^{+170}$                   |
| $0.0070 \pm 0.0024$           | 0.01+15.92                | <b>F</b> 49+1.64         | 20.2 | Ni xxv       | $1s^22s2p$             | $1s^22s3d$             | 9.6300                         | 12.6      | $-76^{+76}_{-6}$                      |
| $9.6276_{-0.0002}$            | $0.01_{-0.01}$            | $-5.43_{-1.62}$          | 29.2 | Ni xx        | $2s2p^{6}$             | $2s2p^22p^34$          | d 9.6291                       | 2.37      | $-46^{+76}_{-6}$                      |
|                               |                           |                          |      | (Fe XXI      | $1s^2 2p^4$            | $1s^2 2p^3 4d$         | 9.6582                         | 6.64)     | $-289^{+128}_{-121}$                  |
| $0.000\pm0.0041$              | <b>5</b> 00+9.63          | <b>r</b> oc+1.88         | 10.1 | ( Fe XXI     | $1s^2 2s 2p^3$         | $1s^22s2p^24e$         | d 9.6421                       | 2.71 )    | $212^{+128}_{-121}$                   |
| $9.6489_{-0.0039}$            | $5.39^{+5.39}_{-5.39}$    | $-5.00_{-2.33}$          | 19.1 | Fe XXI       | $1s^2 2s 2p^3$         | $1s^2 2s 2p 2p 2p 4$   | 4d 9.6500                      | 2.59      | $-33^{+128}_{-121}$                   |
|                               |                           |                          |      | ( Fe XXI     | $1s^22p^4$             | $1s^22p^34d$           | 9.6567                         | 2.35 )    | $-242^{+128}_{-121}$                  |
|                               |                           |                          |      | Fe XXVI      | 2p                     | 3d                     | 9.6745                         | 29.1      | $77^{+319}_{-12}$                     |
| $9.6770^{+0.0103}_{-0.0102}$  | $26.93^{+23.07}_{-18.05}$ | $-5.89^{+3.20}_{-2.58}$  | 10.4 | ( Ni xxv     | $1s^22p^2$             | $1s^22p3d$             | 9.6887                         | 20.5)     | $-362^{+318}_{-316}$                  |
| -0.0102                       |                           | -3.38                    |      | ( Ni xxv     | $1s^2 2p^2$            | $1s^22p3d$             | 9.6913                         | 15.2 )    | $-443^{+318}_{-216}$                  |
|                               |                           |                          |      | ( Fe XIX     | $2s^22p^4$             | $2s2p^22p^24$          | p 9.7061                       | 0.015 ) ← | $170^{+79}$                           |
| $9.7116^{+0.0026}_{-0.0018}$  | $0.10^{+12.34}_{-0.10}$   | $-4.55^{+1.69}_{-1.00}$  | 19.3 | ( Ne x       | 1s                     | 4p                     | 9.7080                         | 0.67 )    | $109^{+79}_{-55}$                     |
| = 0.0018                      | 0.10                      |                          |      | ( Ne x       | 1s                     | 4p                     | 9.7085                         | 0.67 )    | $96^{+79}_{-55}$                      |
|                               |                           |                          |      | Fe XIX       | $\frac{-}{2s2n^5}$     | $\frac{1}{2s2n2n^35d}$ | 9.7326                         | 2.73      | $-159^{+197}_{-155}$                  |
|                               |                           |                          |      | Fe xx        | $2s^22p^3$             | $2s2n2n^24n$           | 9.7242                         | 2.47      | $99^{+197}_{-105}$                    |
|                               |                           |                          |      | Fe xx        | $\frac{1}{2s^2 2p^3}$  | $2s2p^22p4p$           | 9.7269                         | 2.42      | $16^{+197}_{-185}$                    |
| $9.7275^{+0.0064}_{-0.0060}$  | $19.64^{+19.64}_{-11.76}$ | $-6.60^{+2.82}_{-2.10}$  | 18.2 | Fe xx        | $\frac{1}{2s^2 2p^3}$  | $2s2p^22p4p$           | 9.7269                         | 2.42      | $16^{+197}_{-185}$                    |
| -0.0000                       | -11.70                    | -5.15                    |      | Fe xix       | $\frac{1}{2s2p^5}$     | $2s2p2p^35d$           | 9.7313                         | 2.28      | $-120^{+197}_{-185}$                  |
|                               |                           |                          |      | Fe xix       | $2s^22p^4$             | $2s^2 2p^3 5d$         | 9.7327                         | 1.45      | $-162^{+197}_{-185}$                  |
|                               |                           |                          |      | Ni xxv       | $\frac{1}{1s^2 2p^2}$  | $1s^22p3d$             | 9.7230                         | 27.1      | $138^{+197}_{-185}$                   |
|                               |                           |                          |      | ( Ni XXIV    | $1s^22s2p^2$           | $1s^22s2p3d$           | 10.349                         | 32.7      | $-1060^{+578}_{-262}$                 |
|                               |                           |                          |      | Ni XXIV      | $1s^22s2p^2$           | $1s^22s2p3d$           | 10.329:                        | 20.8      | $-488^{+579}_{-264}$                  |
| $10.3125^{+0.0199}_{-0.0129}$ | $41.97^{+8.03}_{-25.80}$  | $8.89^{+5.95}_{-6.30}$   | 8.0  | ( Ni XXIV    | $1s^2 2s 2p^2$         | $1s^22s2p3d$           | 10.297:                        | 19.4      | $444^{+580}_{-365}$                   |
| -0.0120                       | -25.80                    | -0.50                    |      | ( Ni XXIV    | $1s^22s2p^2$           | $1s^22s2p3d$           | 10.343                         | 14.5      | $-903^{+578}_{-262}$                  |
|                               |                           |                          |      | Ni XXIV      | $1s^2 2s 2p^2$         | $1s^22s2p3d$           | 10.331                         | 14.2      | $-550^{+579}_{-264}$                  |
|                               |                           |                          |      | Ni XXIV      | $1s^2 2s 2p^2$         | $1s^22s2p3d$           | 10.4237                        | 29.8      | $92^{+378}_{-304}$                    |
| $10.4269^{+0.0131}_{-0.0146}$ | $19.75^{+34.82}_{10.75}$  | $-5.14^{+3.85}_{-4.00}$  | 5.3  | ( Ni XXIV    | $1s^2 2s^2 2p$         | $1s^22s^23d$           | 10.4410                        | 24.7 )    | $-406^{+377}_{-420}$                  |
| -0.0148                       | -19.75                    | 4.00                     |      | ( Ni XXIV    | $1s^2 2s 2p^2$         | $1s^22s2p3d$           | 10.4116                        | 20.6      | $440^{+379}_{-420}$                   |
|                               |                           |                          |      | ( Fe XVIII   | $2s^2 2p^5$            | $2s^22p^45d$           | 10.5364                        | 2.60 ) ←  | $-396^{+214}_{-396}$                  |
| $10.5225^{+0.0075}_{-0.0051}$ | $0.01^{+28.98}_{-0.01}$   | $-4.12^{+2.53}_{-1.02}$  | 6.8  | ( Fe XVIII   | $\frac{1}{2s^2 2p^5}$  | $2s^22p^22p^2$         | 5d 10.5382                     | 2.25 )    | $-448^{+214}_{-144}$                  |
| -0.0051                       | -0.01                     | -1.95                    |      | ( Fe XVIII   | $\frac{1}{2s^2 2p^5}$  | $2s^22p^22p^2$         | 5d 10.5442                     | 1.22 )    | $-618^{+214}_{-144}$                  |
| 10 FF0F-L0 007F               | i 0.00±14.78              | <b>4 1</b> ○ ± 2 60      | -    | ( Fe XVIII   | $\frac{1}{2s^2 2p^5}$  | $2s2p^22p^34$          | p 10.5640                      | 1.58 ) ←  | $-326^{+213}$                         |
| $10.5525_{-0.0000}$           | $0.00^{-14.18}_{-0.00}$   | $-4.18^{+2.00}_{-2.77}$  | 7.0  | ) ( Fe xviii | $\frac{1}{2s^2 2p^5}$  | $2s2p^22p^34$          | p 10.5672                      | 1.39 )    | $-417^{+213}$                         |
|                               | 0 4×±24 33                | F 0.0±2.72               |      | ( Fe XVIII   | $\frac{1}{2s^2 2p^5}$  | $2s2p^22p^34$          | p 10.5640                      |           | $266^{+180}_{-170}$                   |
| $10.5734_{-0.0060}$           | $0.45^{-24.03}_{-0.45}$   | $-5.06^{+2.12}_{-2.49}$  | 9.6  | ) ( Fe xviii | $\frac{1}{2s^2 2p^5}$  | $2s2p^22p^34$          | p 10.5672                      | 1.39 )    | $175^{+170}_{-170}$                   |
|                               |                           |                          |      | Fe XIX       | $\frac{1}{2s^2 2p^4}$  | $2s^22p^34d$           | 10.6414                        | 5.20      | -34+152                               |
| 10 0 005/                     | 4 00+16 07                | $a \circ 4^{+2} 70$      | 10.0 | ( Fe XIX     | $\frac{1}{2s^22p^4}$   | $2s^2 2p^3 4d$         | 10.6491                        | 3.74 )    | $-250^{+152}$                         |
| $10.6402_{-0.0037}$           | $4.39^{+10.07}_{-4.39}$   | $-6.04_{-3.61}$          | 13.6 | Fe xix       | $\frac{1}{2s^2 2p^4}$  | $2s^22p2p^24$          | d 10.6407                      | 1.24      | $-14^{+152}_{-105}$                   |
|                               |                           |                          |      | ( Fe XIX     | $\overline{2s^2 2p^4}$ | $2s^22p^34d$           | 10.6295                        | 4.78 )    | $302^{+152}_{-105}$                   |
| 10 0007±0 0005                | 7 0 00+8 30               | $0.07 \pm 2.30$          | 0E / | ( Fe XIX     | $2s^2 2p^4$            | $2s^2 2p^3 4d$         | 10.6840                        | 2.28 ) ←  | 160 <sup>+18</sup>                    |
| 10.6897_0.0030                | $0.09^{+0.09}_{-0.09}$    | $-8.05_{-2.29}^{+2.00}$  | 37.4 | ) Fe xix     | $\frac{1}{2s^22p^4}$   | $2s^2 2p^3 4d$         | 10.6798                        | 0.84 )    | $278_{-85}^{-85}$                     |
|                               |                           |                          |      | Ni XXIII     | $1s^2 2p^4$            | $1s^22p2p^23$          | d 10.940:                      | 28.8      | -175+380                              |
|                               |                           | _                        |      | Ni XXIII     | $1s^2 2p^4$            | $1s^22p2p^23$          | d 10.928                       | 26.4      | $136^{+380}_{-348}$                   |
| $10.9339^{+0.0139}_{-0.0127}$ | $44.77^{+5.23}_{-44.77}$  | $16.66^{+7.84}_{-10.33}$ | 16.3 | ( Ni XXIII   | $1s^2 2p^4$            | $1s^22p2p^23$          | d 10.920:                      | 11.7)     | $376_{-340}^{+380}$                   |
| -0.0127                       |                           |                          |      | Ni XXIII     | $1s^2 2s 2p^3$         | $1s^22s2p^23$          | d 10.947                       | 8.41      | $-361^{+380}_{-349}$                  |
|                               |                           |                          |      | Fe XIX       | $2p^{6}$ .             | $2p2p^44d$             | 10.923                         | 8.25      | $296^{+340}_{-349}$                   |
| $11.0010^{+0.0201}$           | $0.00^{+50.42}$           | -3.08+3.08               | 26   |              |                        |                        |                                |           |                                       |
|                               | 0.00 - 0.00               | -3.45                    | 2.0  | 1            |                        |                        |                                |           |                                       |

Table A III.2: List of lines in the 'dip' spectrum – sorted by wavelength (continued)

|                               | $\lambda$ FWHN $\begin{bmatrix} \hat{A} \end{bmatrix}$ $\begin{bmatrix} m & \hat{A} \end{bmatrix}$ | $M EW \Delta \chi^2$<br>[mÅ] | i    | on transition $i$ i | n $\lambda_0$<br>[Å]10 <sup>12</sup> | $A_{ji} \mid \Delta$ | $\lambda/\lambda \cdot c$ |                       |                            |
|-------------------------------|----------------------------------------------------------------------------------------------------|------------------------------|------|---------------------|--------------------------------------|----------------------|---------------------------|-----------------------|----------------------------|
|                               |                                                                                                    |                              |      |                     | 1 20 4                               | 1 20 0 201           | 11 0801                   | 122)                  | 402+22                     |
|                               |                                                                                                    |                              |      |                     | 1s 2p<br>$1^{2}0^{4}$                | $1s \ 2p2p \ 3a$     | 11.0051                   | 10.0                  | $-403_{-249}$<br>565 $+22$ |
| $11.0742^{+0.0008}_{-0.0092}$ | $0.01^{+24.08}_{-0.01}$                                                                            | $-4.77^{+3.17}_{-3.15}$      | 6.1  | N: YYUU             | 1s 2p                                | $1s \ 2p \ 2p \ 3a$  | 11.0901                   | 12.9                  | -505 <sub>-249</sub>       |
|                               |                                                                                                    |                              |      |                     | $1s^{-}2s2p^{0}$                     | $1s^{2}2s2p^{2}3d$   | 11.0722                   | 12.0<br>12.2          | $33_{-249}$                |
| 11.0074+0.0026                | 04.97+20.55                                                                                        | 14 75+6.90                   | 107  |                     | $1s^22s2p^3$                         | $1s^22s2p^3d$        | 11.0694                   | 12.3                  | -410_249                   |
| 11.0974_0.0073                | 24.37 -12.87                                                                                       | 14.75_5.94                   | 10.7 |                     |                                      |                      |                           |                       |                            |
| $11.2051_{-0.0245}^{+0.0049}$ | $42.98^{+7.02}_{-30.24}$                                                                           | $11.34_{-7.36}^{+7.39}$      | 6.4  |                     |                                      |                      |                           |                       |                            |
|                               |                                                                                                    |                              |      | ( Ne ix             | $\underline{1s^2}$                   | 1s3p                 | 11.5440                   | 2.48 )                | $675^{+324}_{-519}$        |
| $115700^{+0.0125}$            | 19 19 +38.30                                                                                       | 5.64 + 4.56                  | 12   | Fe xviii            | $\frac{2s^2 2p^5}{2p^5}$             | $2s^2 2p^2 2p^2 4d$  | 11.5740                   | 1.53                  | $-104^{+323}_{-518}$       |
| $11.0700_{-0.0200}$           | 12.13 - 12.13                                                                                      | -0.04 - 6.27                 | 4.2  | Ni XXII             | $2s2p^4$                             | $2s2p2p^23d$         | 11.5824                   | 20.6                  | $-320^{+323}_{-517}$       |
|                               |                                                                                                    |                              |      | Ni XXII             | $2s2p^4$                             | $2s2p^33d$           | 11.5589                   | 15.7                  | $288^{+324}_{-519}$        |
| $10.007c \pm 0.0135$          | 28.00 + 19.20                                                                                      | 15 62+8.63                   | 10.0 | ( Ne x              | $\underline{1s}$                     | 2p                   | 12.1321                   | 6.16 )                | $-853^{+333}_{-235}$       |
| $12.0970_{-0.0095}$           | $28.00_{-28.00}$                                                                                   | $-13.03_{-7.98}$             | 10.9 | ( Ne x              | <u>1s</u>                            | 2p                   | 12.1375                   | 6.16 )                | $-986^{+333}_{-234}$       |
|                               |                                                                                                    |                              |      | Fe XXI              | $1s^22s2p^3$                         | $1s^22s2p^23d$       | 12.4656                   | 26.9                  | $-9^{+235}_{-12}$          |
| $12.4652^{+0.0098}_{-0.0005}$ | $0.06^{+13.28}_{-0.06}$                                                                            | $-14.04^{+5.65}_{-5.99}$     | 16.6 | Fe XXI              | $1s^2 2s 2p^3$                       | $1s^22s2p^23d$       | 12.4726                   | 9.00                  | $-177^{+235}_{-12}$        |
|                               |                                                                                                    |                              |      | Fe XXI              | $1s^22s2p^3$                         | $1s^22p2p^23p$       | 12.4675                   | 5.82                  | $-54^{+235}_{-12}$         |
|                               |                                                                                                    |                              |      | (Fe XX              | $2s^2 2p^3$                          | $2s^22p2p3d$         | 12.8460                   | 19.2 )                | $-1006^{+413}_{-520}$      |
| $12.8029^{+0.0177}_{-0.0223}$ | $0.15^{+49.85}_{-0.15}$                                                                            | $-3.94^{+3.94}_{-10.45}$     | 0.9  | (Fe xx              | $2s^{2}2p^{3}$                       | $2s^22p2p3d$         | 12.8240                   | 17.1 )                | $-493^{+414}_{-521}$       |
|                               |                                                                                                    |                              |      | Fe xxi              | $1s^22p^4$                           | $1s^22p^33d$         | 12.7869                   | 28.2                  | $375_{-523}^{+415}$        |
| 13 5308+0.0058                | 21 22+12.61                                                                                        | 120 81+36.46                 | 30.0 | ( Ne IX             | $\underline{1s^2}$                   | 1s2p                 | 13.550;                   | $\rightarrow$ ( 000.0 | $-231^{+128}_{-109}$       |
| $13.3398_{-0.0049}$           | $51.55_{-12.19}$                                                                                   | 129.01-35.78                 | 39.0 | ( Ne IX             | $\underline{1s^2}$                   | 1s2p                 | 13.553                    | 0.006 )               | $-294^{+128}_{-109}$       |
|                               |                                                                                                    |                              |      | ( Fe XVII           | $2s^22p^6$                           | $2s^2 2p^5 3d$       | 15.261(                   | 5.87 )                | $1334^{+302}_{-303}$       |
| 15 2220+0.0154                | $40.66^{+0.34}$                                                                                    | $129.06^{+68.53}$            | 11 / | Fe XIX              | $2p^{6}$                             | $2p^2 2p^3 3s$       | 15.334(                   | 0.89                  | $-99^{+301}_{-301}$        |
| 10.0209 - 0.0154              | 49.00-29.20                                                                                        | 130.90_73.93                 | 11.4 | (Fe XIX             | $2s2p^5$                             | $2s2p2p^33s$         | 15.347                    | 0.42 )                | $-355^{+301}_{-301}$       |
|                               |                                                                                                    |                              |      | ( Fe XIX            | $2s2p^5$                             | $2s2p^22p^23s$       | 15.350(                   | 0.33 )                | $-423^{+301}_{-301}$       |





(b) 3...5 Å range of the 'dip' spectrum



(c) 5...7 Å range of the 'dip' spectrum





 $9\ldots 11$  Å range of the 'dip' spectrum







(g) 13...15 Å range of the 'dip' spectrum



(h) 15...17 Å range of the 'dip' spectrum





#### Acknowledgments

First of all, I have to thank my advisor, Jörn Wilms, who introduced me in the exciting physics around black holes, such that I now share his enthusiasm of doing science with them. He has showed me many Linux-tricks and kindly asked me to give up some of my strange habits (concerning Perl, scripting, IATEX, ...), which has finally turned out to be a good idea. He has always had much confidence in me and my work, but he also had a sympathetic ear if I needed his advice or a critical discussion. His friendly nature contributed substantially to the nice and relaxed atmosphere at the whole institute, which encouraged the communication between the different groups and often made working a lot of fun. The professor – student relationship was thus more a collaboration, or even a friendship, which is a great honor for me. He unselfishly spent his flight voucher that made it possible for me, too, to visit our colleagues at the Massachusetts Institute of Technology in Boston. Its was him who helped to establish contact to scientists (Peter Kretschmar, Andy Pollock) at the European Space Astronomy Center near Madrid, where I was finally permitted to perform an ESAC-traineeship to study the stellar wind in the Vela X-1 HMXB system with XMM-Newton/RGS.

I thank Katja Pottschmidt for reading my thesis so intensively. She found many misprints and gave useful comments. All errors still contained are solely due to my faults, of course.

Furthermore, I want to thank Adrienne Juett, whom I had the chance to meet when she spent a week in Bamberg to work on the high-resolution study of X-ray absorption by the interstellar medium. I took the profit to learn from her very much about reduction of *Chandra* data and she was so kind to answer me all my questions I had still later posed by email.

I also owe very much thanks to Mike Nowak, research scientist at the MKI/CXC, who has helped me with many technical problems with ISIS. He gave many comments on my strategy and was always willing for critical discussions. He has also organized part of our trip to Boston and, together with his wife Nirah, finally hosted us kindly for two days.

Moreover, I thank all the other scientists whom I met during my research visit at the MIT Kavli Institute for Astrophysics and Space Research (MKI), where I was hospitably received: John Houck, the developer of ISIS, who has always helped me with my questions; he either referred me to the appropriate functions, or added new features to ISIS – within at most two days. He also often had a look on my stupidly buggy code. Norbert Schulz showed me how the identification of absorption lines has to be done consistently. Andrew Young gave valuable comments about the curve of growth. Julia Lee (from Harvard) made the suggestion to fit complete line series.

I thank all my colleagues at the Remeis observatory, especially Heiko Hirsch and Stephan Geier, whose office I shared and with whom I have always had much fun, but also all the other 'stellar astronomers' from upper floor, namely Alfred Tillich, Christian Schmitt, Fernanda Nieva, Florian Schiller, Horst Drechsel, Markus Firnstein, Norbert Przybilla, Stefan Nesslinger and Uli Heber, as well as our sysadmin Rainer Sterzer and our helpful secretary Mrs. Day. I finally thank Dr. Karl Remeis (1837–1882), whose last will still guarantees the maintenance of the beautiful observatory in Bamberg, which is now our nice astronomical institute.

I thank all trainee students at the Remeis observatory, especially Clemens Bauer and Moritz Böck, for fruitful discussions on X-ray astronomy in general, Cygnus X-1 and ISIS.

I thank all my teachers, both from the university of Regensburg and from Erlangen-Nuremberg, who showed me how interesting physics is. I'd like to mention especially Andreas Schäfer from Regensburg, who encouraged me to accelerate the main courses in order to get faster into real research, which finally was a good decision, and who often helped me with organizational problems. I also will never forget all my fellow students from Regensburg, especially Christoph Lehner and Robert Lohmayer, with whom I have spent a very nice part of my study and who often spent their time together with me for critical discussions.

Last, but loved (not least at all!), I want to thank my darling Alexandra Hundschell. Although doing research is really fun, it will never be all in my life. I'm so glad that I may spend most of my spare time (which was sometimes rather sparse) with her; she supports me and my work (though it kept me sometimes away) and always gives me a lot of energy.

# List of Figures

| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The penetration depth of electromagnetic waves in the Earth's atmosphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The Hertzsprung-Russell diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                              |
| 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The evolution of a compact binary. (after Postnov & Yungelson, 2006, Fig. 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                              |
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mass transfer via focused stellar wind (left) and Roche lobe overflow (right).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                             |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The 5 Lagrangian points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                             |
| 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Spectrum of LMC X-3, showing a transition from the hard to the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13                                                                                                                                             |
| 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The constellation Cygnus with Cyg X-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                             |
| 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A velocity curve of HDE 226868, binned on the orbital phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                             |
| 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The mass of the compact object for $f(M) = 0.252 \text{ M}_{\odot}$ and $M_{\star} = (16 \pm 2) M_{\odot}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16                                                                                                                                             |
| 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mass loss rate of Cyg X-1, modeled by Friend & Castor (1982, Fig. 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17                                                                                                                                             |
| 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unfolded spectra and residuals of Cyg X-1 in the hard and in the soft state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18                                                                                                                                             |
| 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sketched geometry for the hard (top) and soft (bottom) state of Cyg X-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19                                                                                                                                             |
| 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A jet blown ring around Cyg X-1 (cross) next to the H II region Sh2-101 (left).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                             |
| 1.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Phase distribution of dips.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                             |
| 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The Chandra spacecraft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                                                                                             |
| 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chandra's high resolution mirror assembly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                             |
| 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The Rowland geometry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                             |
| 1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The High Energy Transmission Grating HETG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $24^{-5}$                                                                                                                                      |
| 1 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The Science Instrument Module SIM and the High Resolution Camera HRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25                                                                                                                                             |
| 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The ACIS CCD-chips: photography and sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                             |
| 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A readout streak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                                                                             |
| 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chandra's Lissaious dither pattern: time-evolution of the focused target-position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{20}{27}$                                                                                                                                |
| 1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Exactional exposure of $MEC + 1$ wavelength bins in a Chandra grating observation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{21}{27}$                                                                                                                                |
| 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tractional exposure of MEDG+1 wavelength bins in a Chandra grating observation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                                                                             |
| 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The photoionization cross section and the corresponding edges in the spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                             |
| 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Breaking of the degeneracy of the energy levels in multi-electron systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                             |
| 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A simplified Grotrian diagram of He-like ions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                             |
| 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A curve of growth in the form $W_{\lambda}/\lambda^2$ vs. $N_i f_{ij}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                                                                                             |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Curves of growth for S XVI Ly $\alpha$ in the form $W_{\lambda}$ vs. $N_{\rm S XVI}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38                                                                                                                                             |
| 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The response matrix of the xenon-gas Proportional Counter Array on RXTE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                             |
| 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The probability density function $f_{\nu_2}^{\nu}$ of the $\chi^2$ -distribution with $\nu = 1, 2, 3$ d. o. f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                                                                                             |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The cumulative probability $F^{\nu}$ of the $\chi^2$ -distribution with $\nu = 1, 2, 3, d$ of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                                                                                             |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The cumulative probability $T_{\chi^2}$ of the $\chi$ - distribution with $\nu = 1, 2, 5$ d.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                             |
| $_{2.9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\chi$ contours for single parameter confidence levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42                                                                                                                                             |
| 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Finding the zero-order position with HEG and MEG arm and readout streak.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42<br>45                                                                                                                                       |
| $3.1 \\ 3.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42<br>45<br>45                                                                                                                                 |
| $3.1 \\ 3.2 \\ 3.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42<br>45<br>45<br>47                                                                                                                           |
| 3.1<br>3.2<br>3.3<br>3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm. $\ldots$ The main data structures for spectral analysis in ISIS and their interactions.<br>68.3% 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and Ey                                                                                                                                                                                                                                                                                                                                                                                       | 42<br>45<br>45<br>47<br>51                                                                                                                     |
| $3.1 \\ 3.2 \\ 3.3 \\ 3.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm<br>The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$                                                                                                                                                                                                                                                                                                                                                                              | 42<br>45<br>45<br>47<br>51                                                                                                                     |
| 3.1<br>3.2<br>3.3<br>3.4<br>4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm<br>The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                          | 42<br>45<br>45<br>47<br>51<br>54                                                                                                               |
| $3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm<br>The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                          | <ul> <li>42</li> <li>45</li> <li>45</li> <li>47</li> <li>51</li> <li>54</li> <li>54</li> </ul>                                                 |
| $3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | <ul> <li>42</li> <li>45</li> <li>45</li> <li>47</li> <li>51</li> <li>54</li> <li>54</li> <li>54</li> </ul>                                     |
| $3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm<br>The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies<br>'Sky'-image of obs. ID 3814, color-coding the photon energies<br>Default (red) and narrow (blue; excluding most of the halo) extraction regions.<br>Background count rate (lower panel) for different extraction regions:                                                                             | $\begin{array}{c} 42 \\ 45 \\ 45 \\ 47 \\ 51 \\ 54 \\ 54 \\ 54 \\ 54 \\ 54 \end{array}$                                                        |
| $3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm<br>The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies<br>'Sky'-image of obs. ID 3814, color-coding the photon energies<br>Default (red) and narrow (blue; excluding most of the halo) extraction regions.<br>Background count rate (lower panel) for different extraction regions:<br>Counts in the MEG and HEG spectra (including all events of obs. # 3814). | <ul> <li>42</li> <li>45</li> <li>45</li> <li>47</li> <li>51</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>54</li> <li>55</li> </ul> |
| $\begin{array}{c} 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 42\\ 45\\ 45\\ 47\\ 51\\ 54\\ 54\\ 54\\ 54\\ 55\\ 56\end{array}$                                                             |
| $3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 \\ 4.7 $ | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 42\\ 45\\ 45\\ 47\\ 51\\ 54\\ 54\\ 54\\ 55\\ 56\\ 56\\ 56\end{array}$                                                        |
| $\begin{array}{c} 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 42\\ 45\\ 45\\ 47\\ 51\\ 54\\ 54\\ 54\\ 55\\ 56\\ 56\\ 56\\ 57\\ \end{array}$                                                |
| $\begin{array}{c} 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 42\\ 45\\ 45\\ 47\\ 51\\ 54\\ 54\\ 54\\ 55\\ 56\\ 56\\ 56\\ 57\\ 58\end{array}$                                              |
| $\begin{array}{c} 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 42\\ 45\\ 45\\ 47\\ 51\\ 54\\ 54\\ 54\\ 54\\ 55\\ 56\\ 56\\ 56\\ 57\\ 58\\ 59\end{array}$                                    |
| $\begin{array}{c} 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 42\\ 45\\ 45\\ 47\\ 51\\ 54\\ 54\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 59\\ 59\end{array}$                                         |
| $\begin{array}{c} 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 42\\ 45\\ 45\\ 47\\ 51\\ 54\\ 54\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$                                           |
| $\begin{array}{c} 3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ 4.6 \\ 4.7 \\ 4.8 \\ 4.9 \\ 4.10 \\ 4.11 \\ 4.12 \\ 4.13 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Finding the zero-order position with HEG and MEG arm and readout streak.<br>Order sorting in a plot of energy vs. position along the MEG-arm The main data structures for spectral analysis in ISIS and their interactions.<br>$68.3\%$ , 90% and 99% 2-parameter confidence contours of a Gaussian's $\sigma$ and $E_{\lambda}$<br>Detector-image of obs. ID 3814, color-coding the photon energies Default (red) and narrow (blue; excluding most of the halo) extraction regions.<br>Background count rate (lower panel) for different extraction regions: Counts in the MEG and HEG spectra (including all events of obs. $\#$ 3814).<br>Light curve in the energy band of $0.57.2$ keV                      | $\begin{array}{c} 42\\ 45\\ 45\\ 51\\ 51\\ 54\\ 54\\ 54\\ 55\\ 56\\ 56\\ 56\\ 57\\ 58\\ 59\\ 60\\ 81\\ \end{array}$                            |

| 4.14 Line profiles of the fitted series vs. wavelength in Å.                                                   | 87  |
|----------------------------------------------------------------------------------------------------------------|-----|
| 4.15 Definition of the 'dip' sub-spectra (see text).                                                           | 88  |
| 4.16 The 'non-dip', 'dip', 'dip 1' and 'dip 2' flux-corrected spectra                                          | 89  |
| 4.17 Normalized 'non-dip'-spectrum (data/continuum-ratio) vs. wavelength in Å.                                 | 106 |
| 4.18 Normalized 'dip'-spectrum (data/continuum-ratio) vs. wavelength in Å.                                     | 107 |
|                                                                                                                |     |
| 5.1 ASM light curve of Cyg X-1 with indicators of the <i>Chandra</i> observation times.                        | 109 |
| 5.2 Detector image of observation $\#$ 2415 (CC mode)                                                          | 111 |
| 5.3 "Sky-image" of observation $\#$ 2415 (CC mode)                                                             | 111 |
| A III.1 Ratio of 'non-dip 1' and 'non-dip' flux-spectrum.                                                      | 127 |
| A III.2 Ratio of 'non-dip 3' and 'non-dip' flux-spectrum.                                                      | 127 |
| A III.3 Ratio of 'dip 1' and 'dip' flux-spectrum.                                                              | 128 |
| A III.4 Ratio of 'dip 2' and 'dip' flux-spectrum.                                                              | 128 |
| A III.5 Ratio of 'dip 3' and 'dip' flux-spectrum.                                                              | 128 |
| A III.6 The fitted 'non-dip' Cyg X-1 spectrum, including all lines.                                            | 144 |
| A III.7 The 'non-dip' spectrum: $\Gamma\text{-dependence}$ for both models' fit parameteres                    | 145 |
| A III.8 The 'non-dip' spectrum: $\lambda_2$ -dependence of the 1-comp. model's fit parameters.                 | 146 |
| A III.9 The 'non-dip' spectrum: $\lambda_2$ -dependence of the 2-comp. model's fit parameters.                 | 146 |
| A III.10 The 'dip' spectrum: $\Gamma\text{-dependence}$ of the 1-comp. model's fit parameters $% \Gamma^{2}$ . | 147 |
| A III.11 The 'dip' spectrum: $\Gamma\text{-dependence}$ of the 2-comp. model's fit parameters $% \Gamma^{2}$ . | 147 |
| A III.12 The 'dip' spectrum: $\lambda_2$ -dependence of the 1-comp. model's fit parameters.                    | 148 |
| A III.13 The 'dip' spectrum: $\lambda_2$ -dependence of the 2-comp. model's fit parameters.                    | 148 |
| A III.14 The 'dip 1' spectrum: $\Gamma$ -dependence of the 1-comp. model's fit parameters                      | 149 |
| A III.15 The 'dip 1' spectrum: Γ-dependence of the 2-comp. model's fit parameters                              | 149 |
| A III.16 The 'dip 1' spectrum: $\lambda_2$ -dependence of the 1-comp. model's fit parameters.                  | 150 |
| A III.17 The 'dip 1' spectrum: $\lambda_2$ -dependence of the 2-comp. model's fit parameters.                  | 150 |
| A III.18 The 'dip 1' spectrum: $\lambda_2$ -dependence of the 1-comp. model's fit parameters.                  | 151 |
| A III.19 The 'dip 1' spectrum: $\lambda_2$ -dependence of the 2-comp. model's fit parameters.                  | 151 |
| A III.20 The 'dip 2' spectrum: $\Gamma$ -dependence of the 1-comp. model's fit parameters                      | 152 |
| A III.21 The 'dip 2' spectrum: Γ-dependence of the 2-comp. model's fit parameters                              | 152 |
| A III.22 The 'dip 2' spectrum: $\lambda_2$ -dependence of the 1-comp. model's fit parameters.                  | 153 |
| A III.23 The 'dip 2' spectrum: $\lambda_2$ -dependence of the 2-comp. model's fit parameters.                  | 153 |
| A III.24 The 'dip 2' spectrum: $\lambda_2$ -dependence of the 1-comp. model's fit parameters.                  | 154 |
| A III.25 The 'dip 2' spectrum: $\lambda_2-dependence of the 2-comp. model's fit parameters.$                   | 154 |
| A III.26 The fitted 'dip' spectrum, including all lines                                                        | 166 |

# List of Tables

| $1.1 \\ 1.2 \\ 1.3$ | Parameters of stellar atmosphere and wind of HDE 226868 (Herrero et al., 1995)<br>Orbital elements of the binary HDE 226868 / Cyg X-1 (Gies & Bolton, 1982)<br>Recent ephemeris for HDE 226868 / Cyg X-1 | $15 \\ 15 \\ 15 \\ 15$ |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2.1                 | Explicit functions of $F^{\nu}_{\chi^2}(\chi^2)$ and confidence-level defining values of $\Delta(\chi^2)$                                                                                                | 42                     |
| $4.1 \\ 4.2 \\ 4.3$ | Time of observation # 3814 in various formats                                                                                                                                                            | 53<br>55               |
| 4 4                 | Spectrum                                                                                                                                                                                                 | 61                     |
| 4.4                 | List of lines in the hon-dip spectrum – sorted by $\chi$ improvement (see text)                                                                                                                          | 01<br>62               |
| 4.0                 | $\lambda/A$ of H-like ions' triplets (as in Table A1.2) in the non-dip's pectrum $\lambda/\dot{A}$ of He like ions' triplets (as in Table A1.4) in the 'non-dip' spectrum.                               | 00<br>62               |
| 4.0                 | $\lambda/A$ of He like long absorption lines (as in Table A1.4) in the hon-dip spectrum:                                                                                                                 | 00<br>62               |
| 4.1                 | $\lambda/\lambda$ of Li like ions' absorption lines (as in Table A1.5) in the 'non-dip' spectrum $\lambda/\lambda$ of Li like ions' absorption lines (as in Table A1.6) in the 'non-dip' spectrum        | 00<br>69               |
| 4.8                 | $\lambda$ /A of Li-like ions absorption lines (as in Table A1.6) in the non-dip spectrum.                                                                                                                | 03                     |
| 4.9                 | Further from fines                                                                                                                                                                                       | 00                     |
| 4.10                | Eist of fines in the fion-dip spectrum – sorted by for                                                                                                                                                   | 10<br>04               |
| 4.11                | Pitresuits for line series in the non-up spectrum                                                                                                                                                        | 04<br>04               |
| 4.12                | Detected column densities from the (neutral) absorption $\ldots \ldots \ldots \ldots$                                                                                                                    | 04                     |
| 4.13                | fitted $\Gamma$ for the two component model 4.6 of the 'non-dip' spectrum                                                                                                                                | 90                     |
| 4.14                | fitted $\Gamma$ for the one component model 4.2 of the 'dip' spectrum                                                                                                                                    | 91                     |
| 4.15                | fitted $\Gamma$ for the two component model 4.6 of the 'dip' spectrum                                                                                                                                    | 92                     |
| 4.10                | fitted $\Gamma$ for the one component model 4.3 of the 'dip 1' spectrum'                                                                                                                                 | 92                     |
| 1 18                | fitted $\Gamma$ for the two-component model 4.3 of the 'dip 1' spectrum'                                                                                                                                 | 93                     |
| 4 19                | fitted $\Gamma$ for the one-component model 4.3 of the 'dip 2' spectrum'                                                                                                                                 | 93                     |
| 4 20                | fitted $\Gamma$ for the two-component model 4.6 of the 'dip 2' spectrum'                                                                                                                                 | 93                     |
| 4.21                | Best fit parameters for the one / two absorbing component power law model.                                                                                                                               | 94                     |
| 4.22                | List of lines in the 'dip' spectrum – sorted by $\gamma^2$ improvement (see Table 4.4)                                                                                                                   | 95                     |
| 4.23                | $\lambda/\text{Å}$ of H-like ions' absorption lines (as in Table A I.2) in the 'dip' spectrum .                                                                                                          | 95                     |
| 4.24                | $\lambda/\text{Å}$ of He-like ions' triplets (as in Table A I.4) in the 'dip' spectrum:                                                                                                                  | 96                     |
| 4.25                | $\lambda/\text{Å}$ of He-like ions' absorption lines (as in Table A I.5) in the 'dip' spectrum                                                                                                           | 96                     |
| 4.26                | $\lambda/\text{Å}$ of Li-like ions' absorption lines (as in Table AI.6) in the 'dip' spectrum.                                                                                                           | 96                     |
| 4.27                | Further iron lines                                                                                                                                                                                       | 97                     |
| 4.28                | List of lines in the 'dip' spectrum – sorted by ion                                                                                                                                                      | 103                    |
| 5.1                 | Chandra observations of Cvg X-1 (all with the HETGS)                                                                                                                                                     | 109                    |
|                     |                                                                                                                                                                                                          |                        |
| AI.I                | Neutral K- and L-edge energies and relative abundances $A_Z^{\text{IOM}}$                                                                                                                                | 117                    |
| A 1.2               | Wavelengths [in A] of H-like ions' transitions from the ground state $1s$ ( $^2S_{1/2}$ )                                                                                                                | 118                    |
| A 1.3               | Wavelengths [in A] of H-like ions' transitions from the first excited state $(n = 2)$ .                                                                                                                  | 118                    |
| A I.4               | Wavelengths [in A] of He-like ions' triplet transitions (from the $1s^2$ ( <sup>1</sup> S <sub>0</sub> ) state)                                                                                          | 118                    |
| AI.5                | Wavelengths [in A] of He-like ions' transitions from the $1s^2$ ( ${}^{1}S_{0}$ ) ground state                                                                                                           | 118                    |
| A 1.6               | Wavelengths [in A] of Li-like ions' transitions from the ground state $[1s^2] 2s ({}^2S_{1/2})$ .                                                                                                        | 119                    |
| AI.7                | Quantum states assigned to the first 25 level numbers in the ATOMDB                                                                                                                                      | 119                    |
| A 1.8               | Further iron lines                                                                                                                                                                                       | 122                    |
|                     | 1 Contents of a level 1-event file                                                                                                                                                                       | 122                    |
|                     | 2 Contents of a aspect/PCAD file                                                                                                                                                                         | 123                    |
|                     | a Contents of a parameter block file                                                                                                                                                                     | 123<br>199             |
|                     | 4 Contents of a biter file                                                                                                                                                                               | 123<br>199             |
|                     | 6 Contents of a mask file                                                                                                                                                                                | 123<br>192             |
|                     | 7 Contents of a had nivel file                                                                                                                                                                           | 120<br>197             |
| <u>л II.</u>        |                                                                                                                                                                                                          | 144                    |

| A II.8 Contents of a level 1.5-event file                                | 124 |
|--------------------------------------------------------------------------|-----|
| A II.9 Contents of a light curve file                                    | 124 |
| A II.10 Contents of a spectra (pha2) file                                | 125 |
| A II.11 Contents of a background (bkg2) file                             | 125 |
| A II.12 Contents of a grating redistribution matrix function (gRMF) file | 125 |
| A II.13 Contents of a grating ancillary response function (gARF) file    | 125 |
| A III.1 List of lines in the 'non-dip' spectrum – sorted by wavelength   | 129 |
| A III.2 List of lines in the 'dip' spectrum – sorted by wavelength       | 155 |

#### DECLARATION

Hereby I declare that I wrote this diploma thesis autonomously and that I have not used other resources than those quoted in this work.

### Erklärung

Hiermit erkläre ich, dass ich die Diplomarbeit selbständig angefertigt und keine Hilfsmittel außer den in der Arbeit angegebenen benutzt habe.

Bamberg/Madrid, July 2007

(Manfred Hanke)

The references can be found at the end of the main part (before the appendix), on page 114.

Indeed, that's all. Thanks for reading so far!