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normal galaxies, e.g. M31 - In-
frared:
◮ concentrated thermal

emission at IR and optical
wavebands

◮ diameter ∼ 43 kpc
◮ integrated luminosity
∼ 1044 erg

s

AGN:
◮ broad, mainly non-thermal

continuum emission
◮ diameter ∼ pc
◮ integrated luminosity
∼ 1042-1048 erg

s ≈ 1010 L⊙

0http://nedwww.ipac.caltech.edu/
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M31 averaged SED of many blazars

0[5], [3], [10], [15], [18]
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0www.astr.ua.edu/keel/agn/
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Optical spectrum of the central region of NGC 1068. Fath (1908): comparable to
planetary nebula spectra, but with broad emission lines

0[4]
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Maarten Schmidt (1962): redshift of lines⇒ distance using Hubble’s law v = HD ⇒
absolute magnitude over distance modulus⇒ luminosity by comparing Mabs with M⊙
⇒ Lquasar ≈ 50 ·Lbrightest galaxy = 4.8 ·1012 L⊙ for 3C 273

0[18], Falke (MPIfR), [13]
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BLR
NLR

Sy 1 

QSO

Sy 2

QSO

Unified model for radioquiet AGN

0http://www.obspm.fr/actual/nouvelle/jul04

http://www.obspm.fr/actual/nouvelle/jul04


General Characteristics Classification, Unified Model Energy Gain SED Further Jet Physics research References

FR  1

BLRG

NLRG

radio loud

quasars

FR  2

BLRG

NLRG

radio loud

quasars

Unified model for radioloud AGN
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FR II Type, Quasar 3C175, VLA image
at 6cm
(http://www.cv.nrao.edu/~abridle/3c175.htm)

FR I Type, 3C271.1, M84
(http://nedwww.ipac.caltech.edu/)

0[13]

http://www.cv.nrao.edu/~abridle/3c175.htm
http://nedwww.ipac.caltech.edu/
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energy source

Which process of gaining energy is the most efficient one?

Nuclear Fusion

E = ǫmc2 (1)

L ≈ 1047 erg/s over 107 yrs (≈ 3.2 ·1061 erg) requires:

m =
E
ǫc2
≈ 2.2 ·109 M⊙ (2)

(1−ǫ)m ⇒ “fusion-waste”!
Schwarzschildradius of that mass:

rs =
2Gm

c2
≈ 6.6 ·1012 m (3)

→ ǫ= 0.008 ⇒ energy yield ≈ 7.2 ·1018 erg/g

Gravitation ⇒ ǫ ≈ 0.1⇒ energy yield ≈ 1020 erg/g

0[15], [18]
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accretion process I

optical thick accretion disc

⇒ balance between radiation and gravitation

◮ angular momentum→ no accretion

◮ frictional force Ffr≪ Fgrav⇒ Kepler orbits

◮ differential rotation⇒ heating⇒ outward loss of angular momentum⇒ accretion

Radiation

∆E =
GM•m

r
−

GM•m
r +∆r

≈
GM•m

r2
∆r (4)

virial theorem: Ekin = −1/2Epot = −1/2∆E
∆E −Ekin = Ei ⇒heating⇒ radiation
Using [L ] =erg/s:

∆L =
GM•ṁ

2r2
∆r (5)

with accretion rate ṁ.



General Characteristics Classification, Unified Model Energy Gain SED Further Jet Physics research References

Eddington Luminosity

condition for matter being accreted (optically thick discs)

dpgrav

dr
!
>

dprad

dr
(6)

⇒ upper luminosity (Eddington Luminosity LEdd , see handout)

L
!
< LEdd =

GM•mHc
σT

≈ 1.3 ·1038 erg/s ·
M•
M⊙

(7)

upper accretion rate ṀEdd:

LEdd = ηṀEddc2 (8)

⇒ ṀEdd =
LEdd

ηc2
≈ 2 M⊙/yr (9)

With an efficiency η of > 0.12 due to high optical depth as “resistance” for photons.

0[12], [7]
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Temperature Profile

Black body radiation (optical thick)→ temperature layer with Planck Law
∆L = 4πr∆rσT4

T(r) =

(

L
4πr3σSB

)−1/4

=

(

GM•ṁ
8πr3σSB

)−1/4
rs=2GM•/c2

=

(

c6

64πσSBG2

)1/4

ṁ1/4M−1/2
•

( r
rs

)−3/4

(10)

→ r fixed, ṁ ↑ ⇒ T ↑
→ M• ↑, reached temperatures ↓

0[15]
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top: 3C273 in X-Rays (NASA/CXS/SAO,
2003), bottom: Jet of 3C273 in 2cm,
VLBA (NRAO, Kellermann 1998)

Spectral Energy Distribution (SED) of
3C273 ([13], p.149)
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◮ need many instruments on earth
and in orbit measuring
“simultaneous” if possible

◮ units:
[Sν] = erg/m2sHz = W/m2Hz

◮ units: [νSν] = W/m2

◮ L =
∫ ν2
ν1

Sνdν=
∫ lnν2
lnν1
νSνd lnν

◮ (logSν− logν): equal energy at all
frequencies→ spectrum with
α= −1

◮ (logνSν− logν): equal energy at all
frequencies→ flat spectrum with
α= 0⇒ good indicator for
above-average flux (bumps...)

◮ overall radiation follows powerlaws
like Sν ∼ ν−α

0[13]
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Radio - synchrotron emission (circular orbits)

→ high degree of linear polarization .

→ Electron frame of rest : radial symmetric emission

whole emitted power:

I =
4
3
σTcγ2Umag (11)

“cooling time” (energy decreased by factor 2):

t =
3
2

m4c7

e4B2E0
(12)

0http://www.cv.nrao.edu/~abridle/3c175.htm , [13], [7], [11], [2], Falke, [14]

http://www.cv.nrao.edu/~abridle/3c175.htm
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Radio - synchrotron emission (realistic conditions)

less massive particles (electrons)⇒ most efficient energy loss⇒ seem to form a
leptonic plasma

More realistic conditions (see handout):

theoretical model of an AGN

helical trajectory of electrons around
H-fieldlines

0[13], [7], [11], [2], [? ]
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Radio - synchrotron emission (ensemble of electrons)

→ powerlaw-distribution of electrons in jet plasma: N(E)dE ∼ E−sdE

gained energy by radiation = lost energy through emission

= particle distribution · synchrotron emission

Iνdν= η(E)dE = N(E)dE ·
dE
dt

Iν ∼















B−1/2 ν5/2 ν < νc synchrotron self absorption

ν−(p−1)/2 ν > νc optical thin
(13)

0[13], [7], [11], [2]
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Radio - synchrotron emission (ensemble of electrons)
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Submillimetre - IR (thermal black body radiation)

black body emission at different temper-
atures

◮ most likely: thermal BB emission
from central parts of AGN (Torus,
gas, dust)

◮ temperatures for dust: ≈ 20−80 K
◮ no polarization → thermal

emission !
◮ Planck’s law:

Bν(T) =
8πhν3

c3e
hν
kT −1

(14)

0[13]
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IR - UV (thermal black body radiation)

IR Bump
◮ near ≈ 1013 keV
◮ thermal emission of warm dust (T >

2000 K) near black hole

UV Bump
◮ in general: strong, broad line

emission from BLR/NRL→
continuum more difficult to model
than in IR!

◮ Big Blue Bump (BBB ) from hot
accretion disc or free-free emission
(bremsstrahlung)

◮ thermal BB emission of the
temperature-profile

0[13], [7], [15]
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X-Ray - Compton scattering

Compton scattering: energy transfer
photon → electron
inverse Compton scattering: energy
transfer electron → photon

λ
′

−λ=
h

mec
(1−cosθ) (15)

E
′

e =
E

1+ E
me c2 (1−cosθ)

(16)

∆E
E
≈ −

E
mec2

(E ≪mec2) (17)

From Eq.16 for many scattering events (cf. Eq.11):

I =
dE
dt

=
4
3
σTcγ2Uel (18)

0[13], [7], [18]
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relativistic boosting

Time dilatation causes relativistic Doppler effect with

νobs =
νem

γ(1−βcosθ)
(19)

with the relativistic Doppler factor

D=

√

1−β2

(1−βcosθ)
(20)
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relativistic boosting - jet one sideness

One can show, that Iobs
ν

ν3
obs

=
Iem
ν

ν3em
⇒ Iobs

ν =D3Iem
ν

power law Iν ∼ Aνα ⇒ Iobs
ν =D3−αIem

ν

π+θ π

I1
I2

=

(

1+βcosθ

1−βcosθ

)3−α

(21)

In addition: relativistic abberation
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Superluminal Motion

apparent speed of a blob:

vapp =
v sinθ

1−βcosθ
(22)

“superluminal” only for relativistic blob-
speeds (large β) at small viewing angles
Φ

0[18], [13]
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tracking flares of 3C111

VLBA monitoring at 2cm

0[6]
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tracking flares of 3C111

radio lightcurve (top figure)
◮ blob first visible at high frequencies

(synchrotron self absorption mainly
at lower frequencies)

◮ blob expands⇒ less dense
electron plasma⇒ less
synchrotron self absorption

spectral indices (bottom figure)
◮ spectral indices α from Iν ∼ να

◮ compact blobs in plateau-state⇒
flat radio spectrum (α ≈ 0)

◮ decay state: blob expands⇒ radio
spectrum steepened (α < 0)

0[6], [16], [8]
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Relationship between frequency bands

relationship radio - gamma ([17])

◮ comparison radio (22 GHz and 37 GHz, Metsähovi Obs.) - gamma (EGRET)
◮ radio emission several month after gamma emission
◮ coupling gamma - radio: both originate in same flare↔ gamma rays from

SSC-upscattering of synchrotron seed photons (from accelerated relativistic
electrons)

relationship optical - radio ([16]: Generalized Shock Model)

◮ connection: accreted matter (→ optical thermal emission) - radio-flare
◮ strong delay between accretion and radio-flare expected
◮ or: optically thin slope of synchrotron spectrum reaches optical waveband→ no

delay!

0[16], [17], [9]
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UMRAO Radio Observatory

http://www.astro.lsa.umich.edu/obs/radiotel/
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UMRAO lightcurve of PKS 2155-304
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Effelsberg Radio Telescope
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Effelsberg lightcurves of PKS 2155-304
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Effelsberg lightcurves of PKS 2155-304
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Multiwavelength observations of the 2006 flare of PKS 2155-304

simultanious observation of the flare with HESS (gamma), Chandra (X-ray), RossiXTE
(X-ray), Bronberg Obs. (optical)

SED of PKS 2155-304 with highest
and lowest states during this observa-
tion

◮ first peak, right slope: X-Ray
(Synchrotron emission)

◮ second peak: Gamma (inverse
Compton emission)

◮ flare not moving though
frequencies with time

Why X-Ray through Synchrotron emis-
sion??
◮ “blue blazars”
→ less external photons→ less
Compton cooling of electrons→
overall higher photon energies due
to synchrotron or inverse Compton
recoil

◮ “red blazars”
→ higher photon density→ lower
photon energies

0[1], HESS-collaboration (2009)
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Multiwavelength observations of the 2006 flare of PKS 2155-304

plot of spectral index’ and flux variability

◮ strong correlation between X-ray and γ-ray flux (synchrotron and inverse Compton
emission→ as already shown)

◮ γ-ray flux decreases approximately with cube of X-ray flux (Fγ ∼ F3
X )

0HESS-collaboration (2009)
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