General Characteristics

Further Jet Phy

research References

Extragalactic X-ray and Gamma sources

Active Galactic Nuclei

Tobias Beuchert

Universität Erlangen-Nürnberg

24th June 2010

▲口▼▲□▼▲目▼▲目▼ 回▼ ものへの

NGC3783 linear intensity scale

NGC3783 logarithmic intensity scale

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

Wikipedia

- concentrated thermal emission at IR and optical wavebands
- diameter ~ 43 kpc
- integrated luminosity
 ~ 10⁴⁴ erg/s

- broad, mainly non-thermal continuum emission
- diameter ~ pc
- ► integrated luminosity ~ 10^{42} - $10^{48} \frac{\text{erg}}{\text{s}} \approx 10^{10} \text{ L}_{\odot}$

- concentrated thermal emission at IR and optical wavebands
- diameter ~ 43 kpc
- integrated luminosity ~ 10⁴⁴ erg/s

- broad, mainly non-thermal continuum emission
- ► diameter ~ po
- ► integrated luminosity ~ 10^{42} - $10^{48} \frac{\text{erg}}{\text{s}} \approx 10^{10} \text{ L}_{\odot}$

- concentrated thermal emission at IR and optical wavebands
- diameter ~ 43 kpc
- integrated luminosity
 ~ 10⁴⁴ erg/s

- broad, mainly non-thermal continuum emission
- diameter ~ pc
- ► integrated luminosity ~ 10^{42} - $10^{48} \frac{\text{erg}}{\text{s}} \approx 10^{10} \text{ L}_{\odot}$

- concentrated thermal emission at IR and optical wavebands
- diameter ~ 43 kpc
- integrated luminosity
 ~ 10⁴⁴ erg/s

- broad, mainly non-thermal continuum emission
- diameter ~ pc
- ► integrated luminosity ~ 10^{42} - $10^{48} \frac{\text{erg}}{\text{s}} \approx 10^{10} \text{ L}_{\odot}$

- concentrated thermal emission at IR and optical wavebands
- diameter ~ 43 kpc
- integrated luminosity
 ~ 10⁴⁴ erg/s

- broad, mainly non-thermal continuum emission
- diameter ~ pc
- ► integrated luminosity ~ 10^{42} - $10^{48} \frac{\text{erg}}{\text{s}} \approx 10^{10} \text{ L}_{\odot}$

- concentrated thermal emission at IR and optical wavebands
- diameter ~ 43 kpc
- integrated luminosity
 ~ 10⁴⁴ erg/s

- broad, mainly non-thermal continuum emission
- diameter ~ pc
- integrated luminosity $\sim 10^{42} \cdot 10^{48} \frac{\text{erg}}{\text{s}} \approx 10^{10} \text{ L}_{\odot}$

M31

averaged SED of many blazars

⁰[5], [3], [10], [15], [18]

◆□ > ◆□ > ◆臣 > ◆臣 > □ 臣 □

0www.astr.ua.edu/keel/agn/

Optical spectrum of the central region of NGC 1068. Fath (1908): comparable to planetary nebula spectra, but with broad emission lines

Maarten Schmidt (1962): redshift of lines \Rightarrow distance using Hubble's law $v = HD \Rightarrow$ absolute magnitude over distance modulus \Rightarrow luminosity by comparing M_{abs} with M_{\odot} $\Rightarrow L_{quasar} \approx 50 \cdot L_{brightest galaxy} = 4.8 \cdot 10^{12} L_{\odot}$ for 3C 273

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

Unified model for radioquiet AGN

⁰http://www.obspm.fr/actual/nouvelle/jul04

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●

Unified model for radioloud AGN

FR II Type, Quasar 3C175, VLA image at 6cm FR I Type, 3C271.1, M84
(http://nedwww.ipac.caltech.edu/)

(http://www.cv.nrao.edu/~abridle/3c175.htm)

energy source

Which process of gaining energy is the most efficient one?

Nuclear Fusion

$$E = \epsilon mc^2 \tag{1}$$

 $L\approx 10^{47}$ erg/s over 10^7 yrs ($\approx 3.2\cdot 10^{61}$ erg) requires:

$$m = \frac{E}{\epsilon c^2} \approx 2.2 \cdot 10^9 \,\,\mathrm{M_{\odot}} \tag{2}$$

 $(1-\epsilon)m \Rightarrow$ "fusion-waste"! Schwarzschildradius of that mass:

$$r_s = \frac{2Gm}{c^2} \approx 6.6 \cdot 10^{12} \text{ m}$$
(3)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 $ightarrow \epsilon = 0.008 \Rightarrow$ energy yield $\approx 7.2 \cdot 10^{18} \text{ erg/g}$

Gravitation $\Rightarrow \epsilon \approx 0.1 \Rightarrow$ energy yield $\approx 10^{20}$ erg/g

⁰[15], [18]

accretion process I

optical thick accretion disc

 \Rightarrow balance between radiation and gravitation

- ► angular momentum → no accretion
- frictional force $F_{\rm fr} \ll F_{\rm grav} \Rightarrow$ Kepler orbits
- differential rotation \Rightarrow heating \Rightarrow outward loss of angular momentum \Rightarrow accretion

Radiation

$$\Delta E = \frac{GM_{\bullet}m}{r} - \frac{GM_{\bullet}m}{r+\Delta r} \approx \frac{GM_{\bullet}m}{r^{2}}\Delta r$$
(4)

virial theorem: $E_{kin} = -1/2E_{pot} = -1/2\Delta E$ $\Delta E - E_{kin} = E_i \Rightarrow heating \Rightarrow radiation$ Using [L] =erg/s:

$$\Delta L = \frac{GM_{\bullet}\dot{m}}{2r^2}\Delta r \tag{5}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

with accretion rate m.

Eddington Luminosity

condition for matter being accreted (optically thick discs)

$$\frac{d\rho_{grav}}{dr} \stackrel{!}{>} \frac{d\rho_{rad}}{dr}$$
(6)

 \Rightarrow upper luminosity (Eddington Luminosity L_{Edd}, see handout)

$$L \stackrel{!}{<} L_{\text{Edd}} = \frac{GM_{\bullet}m_{\text{H}}c}{\sigma_{\text{T}}} \approx 1.3 \cdot 10^{38} \text{ erg/s} \cdot \frac{M_{\bullet}}{M_{\odot}}$$
(7)

upper accretion rate \dot{M}_{Edd} :

$$L_{\rm Edd} = \eta \dot{M}_{\rm Edd} c^2 \tag{8}$$

$$\Rightarrow \dot{M}_{\rm Edd} = \frac{L_{\rm Edd}}{\eta c^2} \approx 2 \ M_{\odot} / {\rm yr}$$
(9)

With an efficiency η of \ge 0.12 due to high optical depth as "resistance" for photons.

Temperature Profile

Black body radiation (optical thick) \rightarrow temperature layer with Planck Law $\Delta L = 4\pi r \Delta r \sigma T^4$

$$T(r) = \left(\frac{L}{4\pi r^3 \sigma_{\rm SB}}\right)^{-1/4} = \left(\frac{GM_{\bullet}\dot{m}}{8\pi r^3 \sigma_{\rm SB}}\right)^{-1/4} r_{\rm s} = 2GM_{\bullet}/c^2 \left(\frac{c^6}{64\pi\sigma_{\rm SB}G^2}\right)^{1/4} \dot{m}^{1/4} M_{\bullet}^{-1/2} \left(\frac{r}{r_{\rm s}}\right)^{-3/4}$$
(10)

→ r fixed, \dot{m} ↑ ⇒ T ↑ → M_{\bullet} ↑, reached temperatures ↓

top: 3C273 in X-Rays (NASA/CXS/SAO, 2003), bottom: Jet of 3C273 in 2cm, VLBA (NRAO, Kellermann 1998)

- need many instruments on earth and in orbit measuring "simultaneous" if possible
- units: $[S_v] = erg/m^2 sHz = W/m^2 Hz$

• units:
$$[\nu S_{\nu}] = W/m^2$$

•
$$L = \int_{v_1}^{v_2} S_v dv = \int_{\ln v_1}^{\ln v_2} v S_v d\ln v$$

- ▶ (log S_{ν} log ν): equal energy at all frequencies → spectrum with $\alpha = -1$
- (log ν S_ν − log ν): equal energy at all frequencies → flat spectrum with α = 0 ⇒ good indicator for above-average flux (bumps...)
- overall radiation follows powerlaws like $S_{\nu} \sim \nu^{-\alpha}$

- need many instruments on earth and in orbit measuring "simultaneous" if possible
- units: $[S_{\nu}] = erg/m^2 sHz = W/m^2 Hz$
- units: $[\nu S_{\nu}] = W/m^2$

•
$$L = \int_{\nu_1}^{\nu_2} S_{\nu} d\nu = \int_{\ln \nu_1}^{\ln \nu_2} \nu S_{\nu} d\ln \nu$$

- ▷ (log S_{ν} log ν): equal energy at all frequencies \rightarrow spectrum with $\alpha = -1$
- (log ν S_ν − log ν): equal energy at all frequencies → flat spectrum with α = 0 ⇒ good indicator for above-average flux (bumps...)
- overall radiation follows powerlaws like $S_{\nu} \sim \nu^{-\alpha}$

ъ

- need many instruments on earth and in orbit measuring "simultaneous" if possible
- units: $[S_{\nu}] = erg/m^2 sHz = W/m^2 Hz$
- units: $[\nu S_{\nu}] = W/m^2$

•
$$L = \int_{v_1}^{v_2} S_v dv = \int_{\ln v_1}^{\ln v_2} v S_v d\ln v$$

- ▷ (log S_{ν} log ν): equal energy at all frequencies \rightarrow spectrum with $\alpha = -1$
- (log ν S_ν − log ν): equal energy at all frequencies → flat spectrum with α = 0 ⇒ good indicator for above-average flux (bumps...)
- ► overall radiation follows powerlaws like S_ν ~ ν^{-α}

э

- need many instruments on earth and in orbit measuring "simultaneous" if possible
- units: $[S_{\nu}] = erg/m^2sHz = W/m^2Hz$

• units:
$$[\nu S_{\nu}] = W/m^2$$

•
$$L = \int_{\nu_1}^{\nu_2} S_{\nu} d\nu = \int_{\ln \nu_1}^{\ln \nu_2} \nu S_{\nu} d\ln \nu$$

- ▶ (log $S_{\nu} \log \nu$): equal energy at all frequencies → spectrum with $\alpha = -1$
- (log ν S_ν − log ν): equal energy at all frequencies → flat spectrum with α = 0 ⇒ good indicator for above-average flux (bumps...)
- ► overall radiation follows powerlaws like S_ν ~ ν^{-α}

- need many instruments on earth and in orbit measuring "simultaneous" if possible
- units: $[S_{\nu}] = erg/m^2sHz = W/m^2Hz$
- units: $[\nu S_{\nu}] = W/m^2$

•
$$L = \int_{\nu_1}^{\nu_2} S_{\nu} d\nu = \int_{\ln \nu_1}^{\ln \nu_2} \nu S_{\nu} d\ln \nu$$

- ► (log S_{ν} log ν): equal energy at all frequencies \rightarrow spectrum with $\alpha = -1$
- ▶ (log νS_{ν} log ν): equal energy at all frequencies \rightarrow flat spectrum with $\alpha = 0 \Rightarrow$ good indicator for above-average flux (bumps...)
- ► overall radiation follows powerlaws like S_ν ~ ν^{-α}

References

- need many instruments on earth and in orbit measuring "simultaneous" if possible
- units: $[S_{\nu}] = erg/m^2 sHz = W/m^2 Hz$
- units: $[\nu S_{\nu}] = W/m^2$

•
$$L = \int_{\nu_1}^{\nu_2} S_{\nu} d\nu = \int_{\ln \nu_1}^{\ln \nu_2} \nu S_{\nu} d\ln \nu$$

- ► (log S_{ν} log ν): equal energy at all frequencies \rightarrow spectrum with $\alpha = -1$
- (log ν S_ν − log ν): equal energy at all frequencies → flat spectrum with α = 0 ⇒ good indicator for above-average flux (bumps...)
- ► overall radiation follows powerlaws like S_ν ~ ν^{-α}

- need many instruments on earth and in orbit measuring "simultaneous" if possible
- units: $[S_{\nu}] = erg/m^2 sHz = W/m^2 Hz$

• units:
$$[\nu S_{\nu}] = W/m^2$$

•
$$L = \int_{\nu_1}^{\nu_2} S_{\nu} d\nu = \int_{\ln \nu_1}^{\ln \nu_2} \nu S_{\nu} d\ln \nu$$

- ► (log $S_{\nu} \log \nu$): equal energy at all frequencies \rightarrow spectrum with $\alpha = -1$
- (log ν S_ν − log ν): equal energy at all frequencies → flat spectrum with α = 0 ⇒ good indicator for above-average flux (bumps...)
- overall radiation follows powerlaws like $S_{\nu} \sim \nu^{-\alpha}$

References

Radio - synchrotron emission (circular orbits)

- \rightarrow high degree of linear **polarization**.
- \rightarrow Electron frame of rest: radial symmetric emission

whole emitted power:

$$I = \frac{4}{3}\sigma_{\rm T} c \gamma^2 U_{\rm mag} \tag{11}$$

"cooling time" (energy decreased by factor 2):

$$t = \frac{3}{2} \frac{m^4 c^7}{e^4 B^2 E_0}$$
(12)

⁰http://www.cv.nrao.edu/~abridle/3c175.htm, [13], [7], [11], [2], Falke, [14] → < □ → < Ξ → < Ξ → □ = - < ○ <

Radio - synchrotron emission (realistic conditions)

less massive particles (electrons) \Rightarrow most efficient energy loss \Rightarrow seem to form a leptonic plasma

More realistic conditions (see handout):

theoretical model of an AGN

helical trajectory of electrons around H-fieldlines

Radio - synchrotron emission (ensemble of electrons)

→ powerlaw-distribution of electrons in jet plasma: $N(E)dE \sim E^{-s}dE$

gained energy by radiation = lost energy through emission

= particle distribution \cdot synchrotron emission

$$I_{\nu}d\nu = \eta(E)dE = N(E)dE \cdot \frac{dE}{dt}$$

 $I_{\nu} \sim \begin{cases} B^{-1/2} v^{5/2} & v < v_c & \text{synchrotron self absorption} \\ v^{-(p-1)/2} & v > v_c & \text{optical thin} \end{cases}$ (13)

⁰[13], [7], [11], [2]

General Characteristics

Energy Gain

SED

Further Jet Ph

earch Reference

Radio - synchrotron emission (ensemble of electrons)

(b)

Energy Gain

in SED

Further Jet Physics

References

Submillimetre - IR (thermal black body radiation)

- most likely: thermal BB emission from central parts of AGN (Torus, gas, dust)
- temperatures for dust: $\approx 20 80 \text{ K}$
- ► no polarization → thermal emission!
- Planck's law:

$$B_{\nu}(T) = \frac{8\pi h\nu^3}{c^3 e^{\frac{h\nu}{kT}} - 1}$$
(14)

・ロット (雪) (日) (日)

э

black body emission at different temperatures

⁰[13]

IR - UV (thermal black body radiation)

IR Bump

- ▶ near ≈ 10¹³ keV
- thermal emission of warm dust (T > 2000 K) near black hole

UV Bump

- in general: strong, broad line emission from BLR/NRL → continuum more difficult to model than in IR!
- Big Blue Bump (BBB) from hot accretion disc or free-free emission (bremsstrahlung)
- thermal BB emission of the temperature-profile

X-Ray - Compton scattering

 $\begin{array}{l} \mbox{Compton scattering: energy transfer} \\ \mbox{photon} \rightarrow \mbox{electron} \\ \mbox{inverse Compton scattering: energy} \\ \mbox{transfer electron} \rightarrow \mbox{photon} \end{array}$

$$\lambda' - \lambda = \frac{h}{m_{\theta}c} (1 - \cos \theta)$$
(15)

$$E'_{e} = \frac{E}{1 + \frac{E}{m_{e}c^{2}}(1 - \cos\theta)}$$
(16)

$$\frac{\Delta E}{E} \approx -\frac{E}{m_e c^2} \quad (E \ll m_e c^2) \tag{17}$$

From Eq.16 for many scattering events (cf. Eq.11):

$$I = \frac{dE}{dt} = \frac{4}{3}\sigma_{\rm T} c \gamma^2 U_{\rm el} \tag{18}$$

relativistic boosting

Time dilatation causes relativistic Doppler effect with

$$v_{\rm obs} = \frac{v_{\rm em}}{\gamma(1 - \beta \cos \theta)} \tag{19}$$

with the relativistic Doppler factor

$$\mathcal{D} = \frac{\sqrt{1 - \beta^2}}{(1 - \beta \cos \theta)} \tag{20}$$

E ► < E ►

et Physics resea

References

relativistic boosting - jet one sideness

One can show, that $\frac{I_{\nu}^{\text{obs}}}{\nu_{\text{obs}}^{3}} = \frac{I_{\nu}^{\text{em}}}{\nu_{\text{em}}^{3}} \Rightarrow I_{\nu}^{\text{obs}} = \mathcal{D}^{3}I_{\nu}^{\text{em}}$ power law $I_{\nu} \sim A\nu^{\alpha} \Rightarrow I_{\nu}^{\text{obs}} = \mathcal{D}^{3-\alpha}I_{\nu}^{\text{em}}$

$$\frac{l_1}{l_2} = \left(\frac{1 + \beta \cos \theta}{1 - \beta \cos \theta}\right)^{3 - \alpha}$$
(21)

In addition: relativistic abberation

y Gain SEI

Superluminal Motion

apparent speed of a blob:

$$v_{\rm app} = \frac{v \sin \theta}{1 - \beta \cos \theta} \tag{22}$$

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

"superluminal" only for relativistic blobspeeds (large β) at small viewing angles Φ

⁰[18], [13]

References

research

tracking flares of 3C111

VLBA monitoring at 2cm

tracking flares of 3C111

radio lightcurve (top figure)

- blob first visible at high frequencies (synchrotron self absorption mainly at lower frequencies)
- ▶ blob expands ⇒ less dense electron plasma ⇒ less synchrotron self absorption

spectral indices (bottom figure)

- spectral indices α from $I_{\nu} \sim \nu^{\alpha}$
- compact blobs in plateau-state \Rightarrow flat radio spectrum ($\alpha \approx 0$)
- ► decay state: blob expands ⇒ radio spectrum steepened (α < 0)</p>

research

Relationship between frequency bands

relationship radio - gamma ([17])

- comparison radio (22 GHz and 37 GHz, Metsähovi Obs.) gamma (EGRET)
- radio emission several month after gamma emission
- coupling gamma radio: both originate in same flare ↔ gamma rays from SSC-upscattering of synchrotron seed photons (from accelerated relativistic electrons)

relationship optical - radio ([16]: Generalized Shock Model)

- ► connection: accreted matter (→ optical thermal emission) radio-flare
- strong delay between accretion and radio-flare expected
- r: optically thin slope of synchrotron spectrum reaches optical waveband → no delay!

References

research

UMRAO Radio Observatory

research

UMRAO lightcurve of PKS 2155-304

Historic Lightcurve PKS 2155-304

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣》 臣 のなぐ

research Reference

Effelsberg Radio Telescope

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

References

research

Effelsberg lightcurves of PKS 2155-304

Historic Lightcurve PKS 2155-304

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Gain SED

research

Effelsberg lightcurves of PKS 2155-304

F, Spectrum of PKS 2155-304

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Energy Gain

SED Fur

Further Jet Physics

References

research

Multiwavelength observations of the 2006 flare of PKS 2155-304

simultanious observation of the flare with HESS (gamma), Chandra (X-ray), RossiXTE (X-ray), Bronberg Obs. (optical)

SED of PKS 2155-304 with highest and lowest states during this observation

- first peak, right slope: X-Ray (Synchrotron emission)
- second peak: Gamma (inverse Compton emission)
- flare not moving though frequencies with time

Why X-Ray through Synchrotron emission??

"blue blazars"

 \rightarrow less external photons \rightarrow less Compton cooling of electrons \rightarrow overall higher photon energies due to synchrotron or inverse Compton recoil

"red blazars"

 \rightarrow higher photon density \rightarrow lower photon energies

research

Multiwavelength observations of the 2006 flare of PKS 2155-304

plot of spectral index' and flux variability

- ▶ strong correlation between X-ray and γ -ray flux (synchrotron and inverse Compton emission → as already shown)
- γ -ray flux decreases approximately with cube of X-ray flux ($F_{\gamma} \sim F_{\chi}^3$)

⁰HESS-collaboration (2009)

- [1] J.M. Bay et al. Existence of large-scale synchrotron x-ray jets in radio-loud active galactic nuclei. paper, 2001.
- [2] Francis Burke, Bernard F.; Graham-Smith, An Introduction to Radio Astronomy. Cambridge University Press, Cambridge, United Kingdom, 2009.
- [3] D. Donato et al. Hard x-ray properties of blazars. paper, 2001.
- [4] B. Garcia-Lorenzo et al. Spectroscopic atlas of the central region of the seyfert 2 galaxy ngc 1068. paper, Instituto de Astrofisica de Canarias, 1999.
- [5] K.D. Gordon et al. Spitzer/mips infrared imaging of m31: Further evidence for a spiral/ring composite structure. paper, 2006.
- [6] M. Kadler et al. The trails of superluminal jet components in 3c 111. paper, 2007.
- [7] Narlika Jayant V. Kembhavi, Ajit K. Quasars and Active Galactic Nuclei. Cambridge University Press, Cambridge, United Kingdom, 1999.
- [8] Alan P. Marscher et al. Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3c 273. paper, 1985.
- [9] Alan P. Marscher et al. Observational evidence for the accretion-disc origin for a radio jet in active galaxies. paper, 2002.
- [10] Thanu Padmanabhan. Theoretical Astrophysics, Volume 3, Galaxies and Comoslogy. Cambridge University Press, Cambridge, United Kingdom, 2002.
- [11] Oleg Pankratov. Theoretische physik, elektrodynamik, 2008. Lecture WT 2008/2009 University Erlangen-Nürnberg.

- [12] Drechsel Przybilla. Sternatmosphären und strahlungsphänomene, 2009. Lecture WT 2009/2010 University Erlangen-Nürnberg.
- [13] Ian Robson. Active Galactic Nuclei. Wiley, Chichester, England, 1996.
- [14] G. B. Rybicki. Radiative Processes in Astrophysics. Wiley-Vch, Weinheim, 2004.
- [15] Peter Schneider. Einführung in die Extragalaktische Astronomie und Kosmologie. Springer, Berlin, Germany, 2007.
- [16] E. Valtaoja et al. Five years monitoring of extragalactic radio sources iii. generalized shock models and the dependence of variability on frequency. paper, 1992.
- [17] E. Valtaoja et al. The relationship between gamma emission and radio flares. paper, 1996.
- [18] Kadler Wilms. Active galactic nuclei, 2010. Lecture ST 2010 University Erlangen-Nürnberg.

◆ロ▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─のへで