Erdgebundene Gammastrahlungsteleskope

Scheinseminar Astro- und Teilchenphysik SS 2010 Martina Müller

17.06.2010

Martina Müller Erdgebundene Gammastrahlungsteleskope

Gliederung

Motivation

- Physikalischer Hintergrund 2
 - Ausgedehnte Luftschauer
 - Cherenkov-Strahlung
 - Vergleich Elektromagnetische ↔ Hadronische Schauer

3 Teleskope

- Wichtige Eigenschaften
- Heutige Teleskope
- Rekonstruktion 4
 - Überblick
 - Rekonstruktion Schritt f
 ür Schritt
 - Beispiel Krebsnebel

Motivation

- Atmosphäre ist für γ-Strahlung undurchlässig
- Beobachtung im Bereich bis \approx GeV mit Satelliten möglich
- Für hohe Energie nimmt der Fluss ab
- Folge: f
 ür den Energiebereich GeV TeV werden gro
 ße effektive Fl
 ächen ben
 ötigt
- ⇒ Beobachtung von γ-Strahlung im gewünschten Energiebereich ist mit Satelliten nicht möglich

Martina Müller

Motivation

- Lösung: Rekonstruktion der einfallenden Photonen aus erdgebundener Beobachtung der sekundären Teilchenschauer
- Möglichkeiten:
 - Direkte Detektion von Teilchen aus Luftschauern
 - Imaging Atmospheric Cherenkov Teleskope (IACT): Detektion von Cherenkov-Licht der Sekundärteilchen
- \Rightarrow Im Energiebereich GeV TeV sind IACTs Mittel der Wahl

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schauer

Elektromagnetische Luftschauer

- Primärteilchen wechselwirkt mit Kernen in der Atmosphäre
- Für Photonen sind drei Prozesse relevant:
 - Paarerzeugung von Elektronen und Positronen
 - Bremsstrahlung: e[±] im Kernfeld emittiert Photon
 - Ionisierung von Molekülen bei niedrigen Energien

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schauer

Modell eines elektromagnetischen Luftschauers

- Einfallendes Teilchen mit Energie E₀
- Wiederholte Aufspaltung nach jeweils *d* ≈ X₀ · ln(2) mit Strahlungslänge X₀ in Luft
- Nach n-ter Aufspaltungsebene:
 - N = 2ⁿ Teilchen
 - Zurückgelegte Tiefe $X = n \cdot \lambda_r \cdot \ln(2)$
 - Energie E₀ gleichmäßig auf Schauerteilchen verteilt
- Schauer endet, wenn Teilchenenergie die kritische Energie E_{krit} unterschreitet
 - → Maximale Teilchenzahl $N_{max} \propto E_0$ Maximale Schauertiefe $X_{max} \propto \log(E_0)$

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schauer

Cherenkov-Strahlung

- Im Schauer erzeugte hochenergetische Elektronen und Positronen haben Geschwindigkeiten größer der Lichtgeschwindigkeit c_L in Luft
- Geladene Teilchen (e[±]) polarisieren beim Durchflug durch ein nichtleitendes, dielektrisches Medium die umliegenden Moleküle
- Rückkehr in den Ausgangszustand erzeugt EM-Wellen
- Für v < c_L interferieren diese destruktiv, also Auslöschung
- Für $v > c_L$ interferieren sie konstruktiv

⇒ Cherenkov-Strahlung wird erzeugt

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schauer

Mach-Kegel

- Im Zeitraum *t* legt ein Teilchen die Strecke $x_T = v \cdot t = \beta \cdot c \cdot t$ zurück
- Die EM-Wellen legen x_{EM} = c_L · t = c/n_L · t mit Brechungsindex n_L für Luft zurück
- Mach-Kegel wird erzeugt mit $cos(\theta) = \frac{x_{EM}}{x_T} = \frac{1}{n \cdot \beta}$
- Da $n,\beta \approx 1$, ist θ sehr klein
- ⇒ Cherenkov-Licht wird nur in sehr kleinem Winkelbereich ($\theta \approx 1^{\circ}$) abgestrahlt

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schaue

Mach-Kegel

Quelle: W. Hofmann

Quelle: Celik2008[6]

Martina Müller

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schauer

Elektromagnetische ↔ Hadronische Schauer

Quelle: Celik2008[6]

- Gesamte Energie E₀ in e[±]
 → viel Cherenkov-Licht
- Schauer beginnt in hohen Atmosphären-Schichten

• Geringe Schauertiefe (
$$\lambda \approx 37 \frac{g}{cm^2}$$
)

- Ein Teil der Schauerenergie in μ, ν, X
 → weniger Cherenkov-Licht
- Schauer beginnt in tieferen Atmosphären-Schichten

• Große Schauertiefe ($\lambda \approx 80 \frac{g}{cm^2}$)

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schauer

Elektromagnetische ↔ Hadronische Schauer

EM-Schauer

Quelle: Celik2008[6]

- Kompakte Schauerform
- Lichtkegel gleichmäßig, zirkular um Schauerachse

- Schauer diffus, Unter-Schauer aus π-Zerfall → "multi-cored"
- Lichtkegel ungleichmäßig, diffus um Schauerachse

Ausgedehnte Luftschauer Cherenkov-Strahlung Vergleich Elektromagnetische ↔ Hadronische Schauer

Schauerentwicklung

Longitudinale Entwicklung eines 1TeV-Schauers

Quelle: Celik2008[6]

Quelle: Celik2008[6]

Ausgedehnte Luftschauer Cherenkov-Strahlung /ergleich Elektromagnetische ↔ Hadronische Schauer

Cherenkov-Licht

Cherenkov-Lichtpulse sind...

- räumlich begrenzt: Abstrahlung im Bereich von $\approx 1^{\circ}$
- im Frequenzbereich von blauem/UV- Licht
- zeitlich stark begrenzt: in der Größenordnung von einigen ns
- \Rightarrow hohe Anforderungen an Teleskope

Wichtige Eigenschaften Heutige Teleskope

Kenngrößen

Cherenkov-Teleskope sind optische Teleskope, die wichtigsten Bestandteile sind der optische Reflektor und die Kamera.

- Anzahl Teleskope (in stereoskopischen Arrays)
- Spiegelfläche
- Effektive Fläche
- Sichtfeld (FOV = field of view)
- Empfindlichkeit
- Schwellenenergie
- Kamera-Eigenschaften:
 - Art der Detektoren
 - Pixel Anzahl
 - Trigger und Koinzidenz-Trigger

Quelle: HESS[1]

Martina Müller

Erdgebundene Gammastrahlungsteleskope

Wichtige Eigenschaften Heutige Teleskope

Teleskop-Arrays

- Größere gesamte Spiegel-Fläche
- Geringere Triggerschwellen möglich
- Abstand der Teleskope optimal bei ≈ 100m (kleiner bei geringen Energien, größer für hohe Energien, da effektive Fläche mit Abstand skaliert)
- Wichtig ist auch die Standort-Auswahl: möglichst hoch über NN, trocken, dunkel, gut genug zugänglich, ...)

Quelle: Daniel2009[7]

⇒ Stereoskopie ermöglicht...

- ... bessere Winkel- und Energieauflösung
- ... bessere Filterung von Hintergrund-Ereignissen

Wichtige Eigenschaften Heutige Teleskope

Effektive Fläche

- Spiegelfläche pro Teleskop ist von der Größenordnung 100m²
- Effektive Fläche A_{eff} ist wesentlich größer (Größenordnung 10⁴ - 10⁵m²)
- A_{eff} ist abhängig von Energie (und Energieauflösung)

Quelle: www.teilchen.at

Wichtige Eigenschaften Heutige Teleskope

Sichtfeld (FOV), Schwellenenergie, Sensitivität

FOV: field of view

- Im Survey erlaubt ein großes Sichtfeld höhere Beobachtungszeit pro Quelle
- Für hohe Energien ermöglicht ein großes Sichtfeld die Beobachtung entfernter Ereignisse

Schwellenenergie

- Entspricht Maximum der "differential rate curve" (aus effektiver Fläche und erwartetem Spektrum)
- Größere effektive Fläche bedeutet kleinere Schwellenenergie

Sensitivität

- Kalibrierung am Krebsnebel
- Empfindlichkeit angegeben in "% crab"

Wichtige Eigenschaften Heutige Teleskope

Kamera

- Kamera besteht aus PMT-Pixeln:
 - gute blau/UV- Response
 - sehr schnelle Reaktion (Zeitskalen von ns)
- Pixel-Größe bestimmt Bild-Auflösung (aber für Winkelauflösung der Rekonstruktion zweitrangig)
- Trigger löst Aufnahme aus, wenn Pixel-Wert signifikant über das Hintergrundniveau steigt
- Koinzidenz-Trigger f
 ür stereoskopische Systeme
- Recht großes Bild in Kamera-Ebene
- ⇒ Geringe Ansprüche an optische Qualität (Reflektor, Pixel-Größe), aber gute off-axis-performance notwendig

Wichtige Eigenschaften Heutige Teleskope

Grenzen der IACT-Methode

- Für kleinere Schwellenenergien werden immer größere Spiegelflächen benötigt
 → Großer Kostenfaktor
- Geringe Auslastung (≈ 1024h/Jahr), da nur in klaren Nächten mit geringem Mondlicht gemessen werden kann
 → Kurze Beobachtungszeiten begrenzen die Empfindlichkeit
- Starker Hintergrund: nur sehr geringer Anteil der registrierten Schauer sind elektromagnetischen Ursprungs
 - \rightarrow IACTs sind nur so gut wie ihre Filteralgorithmen

Wichtige Eigenschaften Heutige Teleskope

M.A.G.I.C.

Major Atmospheric Gamma-Ray Imaging Cherenkov Telescope

Quelle: MAGIC[2]

- Standort: Roque de la Muchachos Observatory, La Palma
- Zwei Teleskope
- Große Spiegelfläche (2 x 236m²) → größtes IACT
- Niedrigste Schwellenenergie: E ≥ 25GeV messbar

Wichtige Eigenschaften Heutige Teleskope

V.E.R.I.T.A.S.

Very Energetic Radiation Imaging Telescope Array System

Quelle: VERITAS[3]

- Standort: Whipple Observatory, Arizona, USA
- Vier Teleskope (je 106m²) in unregelmäßiger Anordnung
- Effektive Fläche bis zu 10⁵m
- Sichtfeld 3,5°

Wichtige Eigenschaften Heutige Teleskope

H.E.S.S.

High Energy Stereoscopic System

 Standort: Windhoek/Goellschau, Namibia

- Vier Teleskope (je 107m²) in quadratischer Anordnung
- Kameras mit je 960 Pixeln
- HESS II (in Bau): zentrales 600m² Teleskop

Quelle: HESS[1]

Wichtige Eigenschafter Heutige Teleskope

Wichtige Eigenschaften im Überblick

	# Tel.	Area (m²)	# Pix. pro Tel.	FOV (°)	Sens. (% Crab)	Energie (TeV)	E res. (%)	Ang. res. (°)
MAGIC	2	472	574	3,5	2	> 0,025	10 - 20	< 0,1
VERITAS	4	424	499	3,5	1	0,1 - 50	10 - 20	< 0,14
HESS	4	428	960	5	0,7	0,1 - 100	≈ 15	<0,1

Quelle: Daniel2009[7]

Martina Müller

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Bildentstehung

Quelle: Celik2008[6]

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Rekonstruktions-Schritte

Die Stärke der IACT-Methode liegt in der Effizienz, mit der das Signal der γ -Strahlung durch offline Bildbearbeitung vom Hintergrundsignal gefiltert werden kann, sowie in der Rekonstruktion der Eigenschaften des Primärteilchens.

- Kalibrierung und Pixel-Analyse
- Cleaning
- Hillas-Parametrisierung
- Daten-Filterung und γ-Hadron-Unterscheidung
- 8 Rekonstruktion der Schauer-Richtung
- Rekonstruktion des Schauer-Cores
- Energie-Rekonstruktion
- Erweiterte Analyse (Detektion von Quellen, Spektren, 2D-Rekonstruktion)

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Kalibrierung und Pixel-Analyse

Einfallendes Photon erzeugt Ladung im PMT. Die gemessene Gesamtladung ist proportional zur Anzahl Photonen. Ausschlaggebend ist es, die Hardwareabhängigkeit vom Messsignal zu entfernen.

- Hintergrund-Levels: Messung des Pedestals
 - NSB (night sky brightness) Verteilung wird an dunkler Position gemessen
 - Beim Digitalisieren in den FADCs (Flash Analog Digital Converter) wird Offset addiert, um auch negative Schwankungen zu sehen
 - Mean Pedestal = mittleres Hintergrundsignal pro Zeitsample wird aus Langzeitintegration ermittelt
 - Pedvar = Schwankung (FWHM) des Mean Pedestals
 - Skalierte Pedvar: *sc.Pedvar* = ^{Pedvar < Pedvar >}

 σ Pedvar

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Kalibrierung und Pixel-Analyse

- Zeitverzögerungskalibrierung: Time Shift
 - Notwendig aufgrund unterschiedlicher Kabellängen, Elektronikeinfluss, ...
 - Laserrun misst jede Nacht neu den Zeitoffset f
 ür jeden Kanal
- Kalibrierung der PMT-Response: Channel Gain
 - Alterung, Verschmutzung und Schwankungen in der Elektronik verändern den Pixel-Gain kontinuierlich
 - Laserrun misst jede Nacht neu den Gain jedes PMTs
- Pixel Analyse: Pixel werden ausgeschaltet, wenn...
 - sie aus ungeklärem Grund inaktiv sind (Pedvar \approx 0)
 - sie eine Funktionsstörung aufweisen (Pedvar sehr hoch)
 - sie sehr hohe Zeitoffsets oder einen stark veränderten Channel Gain aufweisen
 - sie einen hellen Stern abbilden

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Cleaning

- Ziel: Unterscheidung von Bildpixeln und Hintergrundpixeln
- Definiere Bildpixel als Pixel, deren Wert $\geq 5 \cdot$ pedvar ist
- Begrenzungs- ("boundary") Pixel sind Pixel mit Wert ≥ 2,5· pedvar, die an Bild- oder Begrenzungspixel angrenzen
- Isolierte Bildpixel werden entfernt
- ⇒ Ergebnis ist Bild des Cherenkov-Schauers

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Hillas-Parametrisierung

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Hillas-Parametrisierung

Parametrisierung der Schauerbilder nach dem Cleaning ermöglicht:

- Selektion der Bildqualität
- Unterscheidung zwischen γ und hadronischen Ereignissen
- geometrische Rekonstruktion der Schauer-Richtung und des Schauer-Cores (essentiell für genaue Energierekonstruktion)
- ⇒ Hillas: mindestens 4 der Parameter sollten innerhalb des vorausgesagten Wertebereichs liegen

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Daten-Filterung

Mean Scaled Parameter und "Event Quality Selection"

• Definition für Parameter width und length als:

$$MSP = \frac{1}{N}\sum_{i}^{N} \frac{p_{i}}{}$$

- Anwendung zum Vergleich der ermittelten Parameter mit erwarteten Werten aus Simulationen
- Simuliert wird f
 ür gegebene Schauer-Entfernung (r) und Gr
 öße (size)
- Filterung der Daten, um stark fehlerbehaftete Auswertung zu vermeiden. Verworfen werden Ereignisse...
 - mit zu kleiner size (zu schwaches Bild)
 - die keine klare Form aufweisen (z.B. mit kleiner Pixel-Anzahl oder mit MSP außerhalb der erwarteten Wertebereiche)
 - die an der Kante des FOV liegen (weit entfernte Schauer)

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

γ -Hadron-Unterscheidung

- Cherenkov-Yield
 - Gesamte Energie des Photons verteilt sich auf e[±]
 - Folge: Weniger Cherenkov-Photonen in hadronischen Schauern (v.a. bei niedriger Energie)
 - Filterkriterium ist frac3
- Schauerform
 - γ-Strahlung erzeugt kompakte Ellipsen
 - Kosmische Strahlung erzeugt diffuse, unregelmäßige Bilder, z.T. mit μ-Ringen
 - Filterung: Photon-Effizienzen von \approx 50% bei Unterdrückung von 99,7% der kosmischen Strahlung erreichbar
- Einfallsrichtung
 - Schauer aus der gewünschten Einfallsrichtung (Teleskop-Ausrichtung) ergeben Ellipsen, deren große Hauptachse in Richtung des Zentrums des FOV zeigt
 - Schauer mit geneigten Einfallswinkeln haben andere Orientierung
 - Filterkriterium ist θ^2 -Parameter (entspricht Winkeloffset)

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Schauer- (Einfalls-) Richtung

- Bei stereoskopischer Beobachtung schneiden sich (nahezu) die großen Hauptachsen der einzelnen Bilder im FOV
- Schnittpunkt ergibt die Einfallsrichtung des Primärteilchens
- Methode: Minimierung der gewichteten (*size*) Abstände der großen Hauptachsen zur gesuchten Einfallsrichtung

Quelle: Daniel2009[7]

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Schauer-Core

- Gesucht: Punkt in der Spiegel-Ebene (Ebene senkrecht zur rekonstruierten Schauer-Richtung)
- Schauer-Core entspricht Zentrum der einfallenden Schauerteilchen
- Methode: Minimierung des gewichteten Abstands zwischen den projezierten Hauptachsen
- ImpactParameter: Abstand (in der Spiegel-Ebene) zwischen Schauer-Core und Teleskop, der die Energieabschätzung beeinflusst

⇒ Genaue Rekonstruktion des Schauer-Kerns ist ausschlaggebend für gute Energie Rekonstruktion

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Energie-Rekonstruktion

- Energie wird wie MSP aus lookup-tables (aus Simulationen) abgeschätzt
- Energie des Primärteilchens wird berechnet als gewichteter (*size*) Mittelwert der abgeschätzten Werte der einzelnen Teleskope
- Relativer Fehler $\Delta E = \frac{E_{rekonstruiert} E_0}{E_0}$
- Energie-Bias < ΔE > zeigt Energie-Bereich auf, in dem spektrale Rekonstruktion sinnvoll ist
- Breite von △E gibt Energieauflösung des Detektors an
- Energieauflösung ist Energie-abhängig

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Erweiterte Rekonstruktion

Detektion von Quellen:

- Bestimmung des Signals aus Richtung der Quelle, das über das Hintergrundsignal hinausgeht
- Ausschlaggebend ist die Signifikanz der Abweichung
- Spektrale Rekonstruktion
 - Energie-Rekonstruktion der einfallenden Strahlung getrennt f
 ür ON-/OFF- Modus
 - Energie-Auflösung gibt Bin-Breite
 - Berechnung des differentiellen Flusses pro Bin mit Hilfe der bekannten effektiven Fläche
- Zweidimensionale Rekonstruktion
 - Schauer-Richtung der einfallenden Strahlung rekonstruieren
 - Winkelauflösung gibt Bin-Breite

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Kalibrierung und Pixel-Analyse

- Pedvar bestimmen
- Gain und Zeitoffset im Laserrun bestimmen
- Fehlerhafte Pixel ausschalten

Erdgebundene Gammastrahlungsteleskope

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Cleaning und Hillas-Parametrisierung

Martina Müller

- Hintergrund entfernen (cleaning)
- Hillas-Parameter bestimmen

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Daten-Filterung

- MSP bestimmen
- Daten Filtern nach MSP, # Pixel, size, distance

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Rekonstruktion von Schauer-Richtung und -Core

Quelle: Celik2008[6]

- Schauer-Richtung rekonstruieren aus Orientierung der großen Hauptachsen in der Kameraebene (FOV)
- Schauer-Core rekonstruieren aus Orientierung der großen Hauptachsen in der Spiegelebene (ergibt Impact Parameter)

Überblick Rekonstruktion - Schritt für Schritt Beispiel Krebsnebel

Energie- und Erweiterte Rekonstruktion

- Lookup-tables aus Simulationen erstellen
- Energie-Abschätzung aus size und Impact Parameter
- Energie und Schauer-Richtung ermöglicht spektrale und 2D-Rekonstruktion

er Erdgebundene Gammastrahlungsteleskope

Model Analysis

Prinzip: "High Performance Likelihood Reconstruction Of Gamma-Rays for IACTs"

- Vergleich der Rohdaten (ursprüngliche Pixelwerte) mit Vorhersagen eines Modells
- Minimierung der logarithmischen Wahrscheinlichkeit (über alle Kamera-Pixel) liefert rekonstruierte Parameter

Diese Methode betrachtet u.a.:

- Präzise Beschreibung des NSB-Hintergrunds
- Stereoskopie
- Atmosphärische Tiefe der ersten Wechselwirkung

Model Analysis

Ergebnis:

- Präzisere Energie- und Richtungs-Rekonstruktion
- Sensitivität steigt um Faktor \approx 2 im Vergleich zur Hillas-Methode
- Bei Verbesserung des Modells erwartet man eine weitere Verbesserung der Genauigkeit

Quelle: NauroisRolland2009[8]

CTA - Cherenkov Telescope Array

Angestrebte Eigenschaften:

- Große Fläche
- Größeres Sichtfeld (6-8°)
- Bessere Winkelauflösung
- Sensitivität im Bereich von mCrab
- Breiter
 Spektralbereich

Quelle: Stegmann2010[14]

Vielen Dank für Ihre Aufmerksamkeit!

Quelle: MAGIC[2]

- COCKOUS-

Literatur I

http://www.mpi-hd.mpg.de/hfm/HESS/.

http://wwwmagic.mppmu.mpg.de/.

http://veritas.sao.arizona.edu/.

http://ihp-lx.ethz.ch/.

Barrau et al.

Observation Of The Crab Nebula Gamma-Ray Emission Above 220 GeV By The CAT Cherenkov Imaging Telescope, 1997.

Özlem Celik.

Observations of Crab Nebula and Pulsar with VERITAS.

PhD thesis, University of California, 2008.

Literatur II

Michael Daniel.

Cherenkov Telescope Arrays.

University of Durham, http://www.physics.utah.edu/ lebohec/SIIWGWS/Slides/IACTMDaniel.pdf, 2009.

Mathieu de Naurois and Loic Rolland.

A high performance likelihood reconstruction of gamma-rays for Imaging Atmospheric Cherenkov Telescopes, 2009.

Jim Hinton.

Ground-based gamma-ray astronomy with cherenkov telescopes.

New Journal of Physics 11 (2009) 055005.

Jim Hinton and Werner Hofmann.

Teraelectronvolt astronomy.

Annual Review of Astronomy and Astrophysics 2009.47.

Literatur III

Werner Hofmann.

Opening remarks.

CTA 2009 Fall Meeting, Zurich, 2009.

Steffen Müller.

Ausgedehnte Luftschauer.

Radboud University Nijmegen, http://particle.astro.kun.nl/hs/mueller.pdf, 2006.

Rene A. Ong.

Very high-energy gamma-ray astronomy.

Physics Reports 305 (1998) 93-202.

Christian Stegmann.

CTA - HEAD meeting, Hawaii.

Erlangen Centre for Astroparticle Physics, 2010.

Andreas Zech.

Multi-wavelength observation of the 2006 TeV active state of PKS2155-304. H.E.S.S. Collaboration, 2008.