
IEF

CO

DRI

L

A I

N

RDN
XA

E
A

ESII

C

M

L
MV

A

AI

AD

R

E

L G

E

4–2

Kepler’s Laws 1

Introduction

Johannes Kepler: Motion of planets governed by three laws:

1. Each planet moves in an elliptical orbit, with the Sun at one focus of the

ellipse. (“Astronomia Nova”, 1609)

2. A line from the Sun to a given planet sweeps out equal areas in equal times.

(“Astronomia Nova”, 1609)

3. The square of the orbital periods of the planets is proportional to the cube of

the major axes. (“Harmonice Mundi”, 1619)

Isaac Newton (“Principia”, 1687): Kepler’s laws are consequence of gravitational

interaction between planets and the Sun, and the gravitational force is

F1 = −
Gm1m2

r2
12

r21

r12
(4.1)

where F1 is the gravitational force exerted on object 1, m1, m2 are the masses of the interacting objects, r
their distance, and r21/r12 the unit vector joining the objects, r21 = r2 − r1, r12 = −r21 and
r12 = |r12| = |r21|.
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Kepler’s Laws 2

Keplers 1st Law

SunFocus 2

Planet

Kepler’s 1st Law: The orbits of the planets are ellipses and the Sun is at

one focus of the ellipse.

For the planets of the solar system, the ellipses are almost circular, for comets they can be very eccentric.
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Kepler’s Laws 3

Keplers 1st Law

Major Axis: 2a

M
inor A

xis: 2b

F’ F

r’ r

b

a a

b

Definition: Ellipse = Sum of distances r, r′ from any point on ellipse to two fixed

points (foci, singular: focus), F , F ′, is constant:

r + r′ = 2a (4.2)

where a is called the semi-major axis of the ellipse.
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Kepler’s Laws 4

Keplers 1st Law

Major Axis: 2a

M
inor A

xis: 2b

F’ F

aeae

b

a

Definition: Eccentricity e: ratio between distance from centre of ellipse to focal

point and semi-major axis.

So circles have e = 0.
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Kepler’s Laws 5

Keplers 1st Law

Major Axis: 2a

M
inor A

xis: 2b

F’ F

r’

2ae

θ

r

π−θ

Law of cosines: r′2 = r2 + (2ae)2 − 2 · r · 2ae · cos(π − θ)

use r + r′ = 2a and solve for r to find the polar coordinate form of the ellipse:

r =
a(1 − e2)

1 + e cos θ
(4.3)

Check this for yourself! θ is called the true anomaly .
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Kepler’s Laws 6

Keplers 1st Law

ae
a

a

Major Axis: 2a

M
inor A

xis: 2b
Sun

P
erihelionA

ph
el

io
n

Finally, we need the closest and farthest point from a focus:

closest point : dperihelion = a − ae = a(1 − e)

farthest point : daphelion = a + ae = a(1 + e)
(4.4)

for stars: periastron and apastron,
for satellites circling the Earth: perigee and apogee.
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4–8

Kepler’s Laws 1

2nd Law

t1

t1+∆t

t2
t2+∆tA

A

Kepler’s 2nd Law: The radius vector to a planet sweeps out equal areas

in equal intervals of time.

1. Kepler’s 2nd Law is also called the law of areas.
2. perihelion: planet nearest to Sun =⇒ planet is fastest
3. aphelion: planet farthest from Sun =⇒ planet is slowest
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Kepler’s 2nd law is a direct consequence of the conservation of angular momentum. Remember that angular momentum is defined as

L = r × p = r × mv (4.5)

and its absolute value is
L = mrv sinφ (4.6)

To interpret the angular momentum, look at the figure at the left. The projection of the velocity

v sin φv

r
φ

A

B

C

vector perpendicular to the radius vector r is v sinφ. The distance traveled by the planet in an
infinitesimally short time ∆t is given by ∆x = ∆t · v sinφ. Therefore, the area of the triangle
ABC is given by

∆A =
1

2
r∆x =

1

2
r∆tv sinφ =

L

2m
∆t (4.7)

Kepler’s 2nd law states that the “sector velocity” dA/dt is constant with time:

dA

dt
= lim

∆t→0

∆A

∆t
=

L

2m
= const. (4.8)

To confirm that this claim is true, we need to prove that

d

dt

dA

dt
=

1

2m

dL

dt
= 0 (4.9)

But dL/dt is given by
dL

dt
=

dr

dt
× p + r ×

dp

dt
= v × p + r × F = v × mv + r ×

GMm

r2

r

r
= 0 (4.10)

since the cross product of a vector with itself is zero. Therefore, Kepler’s 2nd law is true and is a consequence of the conservation of angular momentum for a central field.
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4–9

Kepler’s Laws 1

3rd Law

Kepler’s 3rd Law: The squares of the periods of the planets, P , are

proportional to the cubes of the semimajor axes, a, of their orbits:

P 2 ∝ a3.

CMv1

v2
m m

1 2

FgravFgrav

r r1 2

Calculating the motion of two bodies of

mass m1 and m2 gives Newton’s form

of Kepler’s third law:

P 2 =
4π2

G(m1 + m2)
R3 (4.11)

where r1 + r2 = R (for elliptical orbits:

R is the semi-major axis).
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Circular Motion

For an interpretation of Kepler’s third law, consider the motion of two bodies with masses m1

CM
m2m1

v2

v1

r r1 2

and m2 on circular orbits with radii r1 and r2 around a point CM (see figure).

The reason for doing the computation with circular orbits is that the following discussion will be
easier, however, all results from this section also apply to the general case of elliptical motion.
This will be proven later in the lectures on Theoretical Mechanics.

The attractive force between the two points is given by Newton’s law:

Fgrav = G
m1m2

R2
= G

m1m2

(r1 + r2)2
(4.12)

In order to keep the two bodies on circular orbits, the gravitational force needs to be equal the
centripetal force keeping each body on its circular orbit.

The centripetal force is

Fcent, 1 =
m1v

2
1

r1
=

4π2m1r1

P 2

Fcent, 2 =
m2v

2
2

r2
=

4π2m2r2

P 2

(4.13)

where v = 2πr/P was used to determine the velocity of each of the bodies. Setting the
centripetal force equal to the gravitational force gives

4π2m1r1

P 2
= G

m1m2

(r1 + r2)2

4π2m2r2

P 2
= G

m1m2

(r1 + r2)2

(4.14)

canceling m1 and m2 results in
4π2r1

P 2
= G

m2

(r1 + r2)2

4π2r2

P 2
= G

m1

(r1 + r2)2

(4.15)

Dividing these two equations by each other gives
r1

r2
=

m2

m1
or m1r1 = m2r2 (4.16)
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This is the definition of the center of mass.

The total distance between the two bodies is

R = r1 + r2 = r1 +
m1

m2
r1 = r1

(

1 +
m1

m2

)

(4.17)

Inserting into one of the equations 4.15 gives
4π2

P 2
· R ·

m2

m1 + m2
=

Gm2

R2
(4.18)

such that
4π2

P 2
=

G(m1 + m2)

R3
or P 2 =

4π2

G(m1 + m2)
R3 (4.19)

This is Newton’s form of Kepler’s 3rd law.
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4–10

Kepler’s Laws 2

3rd Law

Newton’s form of Kepler’s 3rd law is the most general form of the law.

However, often shortcuts are possible.

Assume one central body dominates, m1 = M � m2:

P 2

a3
=

4π2

GM
= const. = k (4.20)

So, if we know P and a for one body moving around m1, can calculate k.
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4–10

Kepler’s Laws 3

3rd Law

Newton’s form of Kepler’s 3rd law is the most general form of the law.

However, often shortcuts are possible.

Assume one central body dominates, m1 = M � m2:

P 2

a3
=

4π2

GM
= const. = k (4.21)

So, if we know P and a for one body moving around m1, can calculate k.

For the Solar System, use Earth:

• P� = 1 year (by definition!)

• a� = 1 AU (Astronomical Unit, 1 AU = 149.6 × 106 km)

=⇒ k = 1 yr2 AU−3
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4–10

Kepler’s Laws 4

3rd Law

Newton’s form of Kepler’s 3rd law is the most general form of the law.

However, often shortcuts are possible.

Assume one central body dominates, m1 = M � m2:

P 2

a3
=

4π2

GM
= const. = k (4.22)

So, if we know P and a for one body moving around m1, can calculate k.

For the Solar System, use Earth:

• P� = 1 year (by definition!)

• a� = 1 AU (Astronomical Unit, 1 AU = 149.6 × 106 km)

=⇒ k = 1 yr2 AU−3

Jupiter: aX = 5.2 AU. What is its period?
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4–10

Kepler’s Laws 5

3rd Law

Newton’s form of Kepler’s 3rd law is the most general form of the law.

However, often shortcuts are possible.

Assume one central body dominates, m1 = M � m2:

P 2

a3
=

4π2

GM
= const. = k (4.23)

So, if we know P and a for one body moving around m1, can calculate k.

For the Solar System, use Earth:

• P� = 1 year (by definition!)

• a� = 1 AU (Astronomical Unit, 1 AU = 149.6 × 106 km)

=⇒ k = 1 yr2 AU−3

Jupiter: aX = 5.2 AU. What is its period?

Answer: P 2

X
= 1 yr2 AU−3 · 5.23 AU3 ∼ 140 yr2, or PX ∼ 12 years

(with pocket calculator: PX = 11.86 years)
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4–11

N-Body Problem 1

N-Body Problem, I

In reality, planets also excert forces onto each other.

Total equation of motion for the i-th object:

mir̈i = −

N
∑

k=1

Gmimk

r2
i,k

ri − rk

ri,k
(4.24)

=⇒3N differential equations of 2nd order, requiring 6N integrations for their

solution.

Closed solution only possible for 10 of these (6: from motion of center of mass, 3: conservation of angular
momentum, 1: conservation of energy).

Analytic solution: “Perturbation theory”:

1. Assume two body motion around Sun for all planets

2. Evaluate force based on this motion.

3. Update positions with this “perturbation”.

4. Iterate (i.e., goto step 2)
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N-Body Problem 2

N-Body Problem, II

Perturbation theory yields two kinds of perturbations:

periodic perturbations: Terms containing time in sin- and cos-functions.

secular perturbations: Long term changes which depend on time (usually as a

polynomial).

Analytical approach is very important for understanding the underlying physics,

but mathematically very tedious. Series do not converge on long timescales

(1000’s of years).

=⇒New high precision calculations are all based on numerical simulations, i.e.,

direct solution of equation of motion on computers.

Today’s standard: DE102, DE405, DE414 from Jet Propulsion Laboratory, Pasadena, and INPOP06 from
Laskar et al., IMCCE, Observatoire de Paris.
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4–13

N-Body Problem 3

Long-Term Evolution of the Solar System

(Laskar, 1994)

Numerical simulations allow to obtain

good information about behavior of

solar system for timescales of a few

10 Million years around the present

=⇒ Important, e.g., for

paleoclimatology.

Laskar (1989, 1990): Motion of

inner planets is chaotic.

“Chaotic”: Initial errors get amplified exponentially,
here by factor of 10 on time scales of ∼10 million
years.

Important, e.g., for climate variations on Earth
(“Milankovitch cycles”).

Also found with different methods by Wisdom and
Suskind.
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N-Body Problem 4

Long-Term Evolution of the Solar System

(Laskar, 1994)

Numerical simulations allow to obtain

good information about behavior of

solar system for timescales of a few

10 Million years around the present

=⇒ Important, e.g., for

paleoclimatology.

Laskar (1989, 1990): Motion of

inner planets is chaotic.

“Chaotic”: Initial errors get amplified exponentially,
here by factor of 10 on time scales of ∼10 million
years.

Important, e.g., for climate variations on Earth
(“Milankovitch cycles”).

Also found with different methods by Wisdom and
Suskind.
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4–14

N-Body Problem 5

Long-Term Evolution of the Solar System

(courtesy J. Laskar/CNRS)

Rotation period and orbital

period of Mercury are in a 3:2

resonance.
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4–15

N-Body Problem 6

Long-Term Evolution of the Solar System

Chaotic motion of Mercury’s orbit increases

probability of capturing Mercury in its 3:2

resonance with its orbit via tidal dissipation

from <5% in classical theory to ∼55%.
Similar explanation also for retrograde rotation of Venus,
Earth is saved from such a behavior because of the
stabilizing influence of the Moon.

(Correia & Laskar, 2004)
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