

Wavelength

0.0

eren , ø.∂

0.6

ω

10-14

10-15

ດ

(10.5)

Ionization Equilibrium

Ionization Equilibrium

10-18

The cross-section for recombination, $\sigma_{\rm B}$, can be easily computed using the principle of detailed balance that we used, e.g., in the derivation of the self-absorption spectrum for bremsstrahlung and synchrotron radiation. The derivation given below follows Osterbrock, Astrophysics of Galactic Nebulae and Active Galactic Nuclei. The microphysical processes that are balanced here are photoionization by photons in the energy range from $h_{\rm b}$ to h(v+dw), with (spontaneous or induced) recombi-

nations from electrons in the velocity range from v to v + dv. Thus, v and ν are related by

$$\frac{-m_0}{2} v^2 + h v_{\text{freeds}} = h v \tag{10.9}$$

$$m_0 v \, dv = h \, dv \tag{10.10}$$

In thermodynamical equilibrium, the rate of induced recombinations is $\exp(-h\nu/kT_{\rm e})$ times the rate of induced ionizations, such that

$$_{s^n Z_{i,z}+t^n \sigma_{\mathbf{fb}}(v) f(v) \, \mathrm{d}v = (\mathbf{1} - \exp(-h\nu/kT_{\mathbf{f}})) n_{Z_{i,z}} \frac{4\pi B_\nu(T_{\mathbf{f}})}{h_\nu} \sigma_{\mathbf{fb}}(v) \, \mathrm{d}\nu$$

(10.11)

Because we are in thermodynamical equilibrium, the radiation field is a Planckian, B_{ν} , and the electron distribution, f(v), is given by the Maxwell-Botzmann distribution,

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m_{\theta}}{2kT_{\theta}} \right)^{3/2} v^2 e^{-m_{\theta}v^2} / 2kT_{\theta}$$
(10.12)

As is shown in many introductory books to astrophysics, in thermodynamical equilibrium the ionization structure is given by the Saha equation.

$$\frac{\eta_{Z,z}}{\eta_{Z,z}} = \frac{2g_{z+1}}{z_1} \left(\frac{2\pi m_e kT_e}{h^2} \right)^2 e^{-h\nu_{pus}/hT_e}$$
(10.13)

where the g_i are the statistical weights of the two ionization stages

Inserting everything gives the Milne relation

$$\sigma_{\rm lb}(v) = \frac{g_{z,m}}{2} \frac{\hbar^2 \nu^2}{m^2 \omega_{\rm d} \omega_{\rm d}} \sigma_{\rm bl}(\nu)$$

(10.8)

for the recombination cross section σ_b into the *n*th level of the ion (Z, z). Here, we've explicitly written down the statistical weight of this level as $g_{z,n}$ and assumed that the recombining ion, (Z, z + 1) is in its ground state (n = 1).

An alternative derivation using quantum mechanics uses symmetry arguments for the relevant matrix elements $\langle z | H | z + 1 \rangle$.

-

Photoionization Equilibrium

	10–23	10-25
Collisional (De)Excitation, I		Line Diagnostics: Density, I
Computation of C_{ij} : For excitation, overall upward rate given by		OII
$R_{12} = n_{\rm e} n_1 C_{12} = n_{\rm e} n_1 \int_{E_2}^{\infty} \sigma_{12}(E) Ef(E) dE$	(10.17)	3/2 ² D
where σ_{12} : collisional cross section, $f(E)$: electron velocity distribution. σ_{12} is strongly varying and roughly $\propto E^{-1}$. Thus		
$\sigma_{12}(E) = \left(\frac{\hbar^2}{8\pi m_{\rm e}E}\right) \left(\frac{\Omega_{12}}{g_1}\right)$	(10.18)	37706
where Ω_{12} : collision strength. QM shows (Seaton, 1958):		3729
$\Omega_{ij} = \left(rac{8\pi}{\sqrt{3}} ight) rac{gf_{ij}}{E_{ij}} \cdot G(T)$	(10.19)	To determine density: Look at line from ion
where ${\cal G}(T)$ is a Gaunt factor. Assuming a Maxwell-Boltzmann distribution for $f,$ the upward rate is		with two levels with almost same excitation energy which deexcite either radiatively or
$R_{12} = n_{\rm e} n_1 \left(\frac{2\pi \hbar^4}{k_{\rm B} m_{\rm e}^3} \right)^{1/2} T^{-1/2} \left(\frac{\Omega_{12}}{g_1} \right) \exp\left(-\frac{E_{12}}{kT} \right)$	(10.20)	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ collisionally. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1000 \text{ cm}^{-3} \text{ use [OII] } 3729/3726\text{Å},}{3/2}$ for higher densities: CII
Line Diagnostics	5	Line Diagnostics 4
	20	
Collisional (De)Excitation, II	+7-01	Line Diagnostics: Density, II
Analoguously, the rate for collisional de-excitation is		In equilibrium, the rate equations are
$R_{21} = n_{\rm e} n_1 \int_0^\infty \sigma_{12}(E) E f(E) dE = n_{\rm e} n_2 \left(\frac{2\pi \hbar^4}{k_{\rm e} m^3}\right)^{1/2} T^{-1/2} \left(\frac{\Omega_{21}}{\alpha_{\rm e}}\right)$	(10.21)	$n_1 n_{\rm e} C_{12} = n_2 A_{21} + n_2 n_{\rm e} C_{21} \text{and} n_1 n_{\rm e} C_{13} = n_3 A_{31} + n_3 n_{\rm e} C_{31} \tag{10.26}$
as for de-excitation the energy threshold is zero.		such that $\frac{n_2}{n_1} = \frac{n_{\rm e}C_{12}}{A_{21} + n_{\rm e}C_{21}} = \frac{n_{\rm e}}{A_{21} + n_{\rm e}C_{21}g_1}C_{21}\exp(-E_{12}/kT) $ (10.27)
Io derive 3421 in terms of 3412, make use of microreversibility: In equilibrium, we know that the population densities are given by Boltzmann:		and a similar equation for $n_3/n_4.$ Intensity of the line (assuming cloud is ontically thin)
$\frac{n_2}{n_1} = \frac{g_2}{g_1} \exp\left(-\frac{E_{12}}{kT}\right)$	(10.22)	$4\pi I_{21} = A_{21}n_2h\nu_{21} \tag{10.28}$
But in equilibrium upward and downward rate are the same:		Therefore, using $ u_{21}\sim u_{31}$:
$R_{12} = R_{21}$	(10.23)	$\frac{I_{21}}{I_{31}} = \frac{A_{21}n_2h\nu_{21}/4\pi}{A_{31}n_3h\nu_{31}/4\pi} = \frac{A_{21}n_2}{A_{31}n_3} = \frac{C_{21}g_2A_{21}A_{31}+n_{\Phi}C_{31}}{C_{31}g_3A_{31}A_{21}+n_{\Phi}C_{21}}\exp(-E_{32}/kT) $ (10.29)
such that $\frac{n_2}{n_1} = \left(\frac{\Omega_{12}}{g_1}\right) \left(\frac{g_2}{\Omega_{21}}\right) \exp\left(-\frac{E_{12}}{kT}\right)$	(10.24)	$= \frac{g_2 C_{21} 1 + n_e/n_{\text{Ct},3}}{g_3 C_{31} 1 + n_e/n_{\text{Ct},2}} \exp(-E_{32}/kT) $ (10.30) where the critical density is defined by
	(10.25)	$m_{\sigma\sigma} = A_{\sigma\sigma}/C_{\sigma\sigma} \tag{10.31}$
$\Omega_{12} = \Omega_{21}$	(02.01)	1001 - 1121 - 1121

Line Diagnostics

ო

Line Diagnostics

S

Line Diagnostics

 \sim

Line Diagnostics

ი

C European Southern Observatory

ESO PR Photo 02a/02 (25 January 2002)

M51, NOAO, T. Rector

1-1

11-11	11-13
Molecules: History	Molecular Hamiltonian, II
 Secchi, 1878: First notice of molecular features in stellar spectra (class III and 	Transitions in molecule due to three different categories:
IV; no explanation)	1. electronic transitions between different levels
Today known as TiO, C ₂ , and CN bands	typical energies: $\sim eV$
• 1930s: Molecular lines in spectra of planetary atmospheres and comets as	⇒ visual or UV
well as low temperature stars	2. vibrational transitions due to oscillation of nuclei
- 1941: Interstellar absorption lines due to CN, CH, and CH $^+$ in optical spectrum of ζ Oph	typical energies: 0.1 to 0.01 eV ──> infrared
• Weinreb et al, 1963: Radio absorption lines at $\lambda=$ 18 cm from OH towards SNR Cas A (not associated with Cas A, but with foreground clouds).	3. rotational transitions due to rotation of nuclei around common typical energies: 10^{-3} eV
Discovery of masers (=non-LTE!)	→ cm and mm wavebands
• Cheung et al., 1968: First multi-atom molecules: NH $_3$ and H $_2$ O ($\lambda=$ 1.35 cm).	Will now look at these in (some) detail.
 Snyder et al., 1969: Formaldehyde (H₂CO). 	
$ullet$ Today: \sim 130 different molecules known	
Molecules: History	Molecular Spectroscopy
Molecular Hamiltonian 1	Flectronic States
Simplest case: diatomic molecule	
Hamiltonian: due to motion of nuclei and electrons.	
Assume molecular size $a~(\sim$ 1 Å).	
Heisenberg:	
$\Delta p \Delta q \ge \hbar$ (11.1)	Basic building-block: electronic states.
⇒ typical energy spacing	Generally, in molecules, distinction between "state", "level", and "term" from atomic spectra is <i>not</i> made!
$\Delta E \sim \frac{\Delta p^2}{2m} \sim \frac{\hbar^2}{2ma}$ (11.2)	Diatomic molecules: classify electron angular momen- tum along internuclear axis
since $\Delta q \sim a$.	0 ² In this case, wavefunction has <i>p</i> -symmetry
For electrons: $\Delta E \sim$ 1 eV ($\stackrel{=}{=}$ 10 ⁴ K),	$\Longrightarrow \Psi \propto \exp(im\varphi), \Psi$ for other two coordinates depend on m^2 only \Longrightarrow
for nuclei: $\Delta E \sim$ 0.001 eV ($\widehat{=}$ 10 K)	electronic states independent of sign of m . Therefore use
\Longrightarrow To first order, can ignore kinetic energy of nuclei	$\lambda = m , \lambda = 0, 1, 2, \dots$ (11.3)
In other words: electrons move much faster than nuclei \Longrightarrow can assume quasi-stationarity. QM: Computation in "Born-Oppenheimer approximation", i.e., factorize wave-function $\Psi=\Psi_{e}\Psi_{nucl}$ and	to describe wave functions.
compute Ψ_{e} using the assumption that the nuclei are fixed.	Electronic states with $\lambda = 0, 1, 2, 3, \ldots$ are called $\sigma, \pi, \delta, \phi$.

Molecular Spectroscopy

Molecular Spectroscopy

с

		1-17
Electronic States, II	Vibrations	
State of molecule: sum of orbital angular momenta, I . Projection of L onto axis gives M_L , characterized by quantum number Λ . $\Lambda = 0.1, 2.3$ are called Σ . Π . Δ . Φ		
Finally, multiplicity: Total electronic angular momentum (quantum number S). Write as in atoms, $^{2S+1}\Lambda$, such as $^{2}\Sigma$, $^{4}\Pi$, etc.	The internuclear potential $P(r)$ is simil the Morse potential,	ilar to
Sometimes, the sum of Λ and Σ is appended to the term symbol: For example, for ⁴ Π .	$\mathbf{P}[\mathbf{F}] = P(r) = D_{\mathbf{e}} \left(1 - e^{-a(r-r_{\mathbf{e}})} \right)^2 \cdots \sum_{n=1}^{n-1} \frac{1}{n!} \left(1 - e^{-a(r_{\mathbf{e}}-r_{\mathbf{e}})} \right)^2$	(11.6)
$\Delta = 1$ and $\Delta = -3/2, -1/2, 1/2, 3/2,$	where D_{Θ} is the potential energy at lar distances (=dissociation energy), and	rge I _{re} is
such that ${}^4\Pi_{5/2},{}^4\Pi_{3/2},{}^4\Pi_{1/2},{}^4\Pi_{-1/2}$	tance of nuclei).	dis-
Individual states are sorted in a strange way. X is ground state (sometimes addtl. $_g$ appended),	Distance r The Schrödinger equation gives the vit tional energies	ibra-
higher states are A, B, C , other terms a, b, \dots (e.g., ground state of CN is $X^2 \Pi$, ground state of H ₂ is $X^1 \Sigma_g$).	$E(v)=h u_{ m osc}(v+1/2)$ with $ u_{ m osc}=rac{a}{2\pi}\sqrt{rac{2D_{ m e}}{m}}$ where $u=0.1.2$ is called the vibrational quantum number	(11.7)
Molecular Spectroscopy 4	Molecular Spectroscopy	Q
11-16		1-18
Electronic States, III	Rotational Spectra, I	
Energy of electronic state: In molecular spectroscopy, use wavenumber $\tilde{\nu}$ instead of Energy:	Kinetic energy of rotation: $H_{\rm rot} = \frac{1}{2} \Theta \omega^2 = \frac{J^2}{2\Theta}$	(11.8)
$E = h\nu = \frac{hc}{\lambda} = hc\tilde{\nu} \tag{11.4}$	where J is angular momentum and where Θ is the moment of inertia. For a diatomic molecule with nuclei A and B ,	
I ne energy expressed in terms of wavenumber is called a term value (not to be confused with "terms" of atomic physics!)	$\Theta = m_A r_A^2 + m_B r_B^2 =: m r_e^2$	(11.9)
The electronic term value is given by	where $oldsymbol{r}_{s}=oldsymbol{r}^{_{A}}-oldsymbol{r}_{R}$ (1	11.10)
$T_{\mathbf{e}} = T_{0} + A \cdot \Lambda \cdot \Sigma \tag{11.5}$	and where the reduced mass is m_{mn}	
where Σ is the projection of $old S$ on the internuclear axis, and A,T_0 are constants.	$m = \frac{m_{A} m_B}{m_A + m_B} \tag{1}$	(11.11)
\Longrightarrow Spin has large influence on energy!	Finally, the angular momentum is $oldsymbol{J}=\Thetaoldsymbol{\omega}$ (1	11.12)
Typical energies are on the order of several eV. The sign of A determines the order of energies:	Normally, the moment of inertia is a tensor	
$A > 0 \Longrightarrow$ Regular multiplet $A < 0 \Longrightarrow$ Inverted multiplet		
append <i>r</i> or <i>i</i> to designation of state		

11–18

9

11-17

(11.10)

(11.11)

Molecular Spectroscopy

Molecular Spectroscopy

ß

 \sim

	0.0						
	† '96						
4∇εΣ	5.761	1 009.05	864.4	14252.0	10 £00.0	6.03	29.1
∇_1	· p	[£.000 I]	٤ <u>6.</u> ٤	09 7 52.0	86 200.0	6.8	29.1
$_{1}\Sigma_{+}$	0.2152+ <i>b</i>	[9.4101]	(\$6.4)	0.549 22	LE E00.0	[0'9]	09.1
Π_{ϵ}	12 025.	654 ^{.2}	1.2				
	16.080 11						
	14 362.8						
Φ_{2}^{\prime}	0.16441	8 <i>L</i> .78	3.942	6£ 702.0	£1 £00.0	76'9	99'I
Πī	$\epsilon^{0.225}$ 11 + b	[02.116]	(s ⁷ .č)	75.5337	16 200.0	1.8	S9.1
	§.E92.61						
	1.215.01						
°∐ε	5.15E ð1	.275.	۶.	[71 802.0]		[98'9]	[76.1]
	10 452/15						
	5.222 91						
ΎΣεΟ	0'/1961	92.858	97.4	68 684.0	90 £00:0	L'9	69'1
		O ₉₁ !L ₈₇	D_0^0	Və 78.8 =			
'Π ² λ	0.0	19 <i>1.757</i> £	£188.48	8016.81	0.7242	86.91	99 696 0
		$H_{\rm I} \; O_{9 \rm I}$	$D_{0}^{0} =$	Və 292 eV			
$+\Sigma_{1}$	0.0	2169.814	13.2883	£ 156.1	\$ 110.0	121.0	1.128
ťΠε	07.383 84	1743.41	14'3 ^e	1.691 24	\$0610.0	96.36	1.205 74
+32+	64.828.45	1 528.60	894.01	1.3446	0'018 6 ³	14.8	1.352.3
		O91 O21	$D_{0}^{0} =$	Və 20.11			
+32+	0.0	5 068 26	780.61	<i>₽</i> 7 668.1	69E L10.0	07.9	71.1
$^{\prime}\Pi_{7}$	6 542.28	1815.5 ⁶	609.21	1517.1	80710.0	5.93	1.23
$3_5\Sigma_+$	0.287 82.0	5 1 63 6	2.02	£76.1	620.0	[9.6]	\$1.1
(+) τ	(32400.)						
'UzC	54 486.3	1 004°1	⁸ L'8	1.162	610.0	.Γ	05.1
		15C 1tM	D_0^0	Λ ³ ⁹ L. ⁷ =			
$+^{2}Z_{1}Z_{1}$	0.0	17.4281	13.340	^{\$8618.1}	\$9 <i>L</i> 10'0	26.9	1.24
″∐ ɛ	110.24	SE.148 I	<i>L</i> 9'11	1.632 46	19910'0	44.8	1.5.1
3Z_	6 434°3′	1470.4 ₅	61.11	1.485 ₂	7£910.0	6.22	75.1
"∐ 1	00.195.8	SE.808 I	870.21	₽£919.1	98 910 0	44.8	1.35
2Σ+ ⁿ	13312.1	^{9.} 1961	7.E1	78.I			1.23
°Ц	20 022.50	1 188.22	16.440	L 75L'I	80910.0	₽1.9	1.27
		15C ⁵	$D_{0}^{0} =$	V5 12.8			
ζ1Σ+1205	0.0	¢401.213	121.33°	°£\$8.09	3.062 ₂	17.4	¢L'0
od7_"318	0.00719	60.82£ I	888.02	\$0.154	1.1845	\$29.1	1.29
udZn∐1 (8.680.001	2443.77	\$22.69	6295.15	۲.664 ₇	2.23	£0.1
		^z H ¹	$D_0^0 = 4$	Λ ^{9 €} 18/⊅			
ועור	21	°m	avam.	ða	200	20	(37)? (

10

11-21

Table 11.1. Selected Constants for Diatomic Molecules. (Units are cm⁻¹ cept as indicated.)

Order of magnitude of B: Typical separation of nuclei in molecule $a \sim 1 {
m \AA} \sim 10^{-8}\,{
m cm}$. For CO,

reduced mass is about 10 amu, or 1.6 \times 10 $^{-23}$ g. Therefore

 $B = 1.75 \, {\rm cm}^{-1}$

Therefore, the wavenumber of a transition between J = 1 and J = 0 is

 $\tilde{\nu}_{J=1 \to J=0} = \mathbf{3}B - \mathbf{1}B = \mathbf{2}B = \mathbf{3.5}\,\mathrm{cm}^{-1}$

corresponding to $\lambda=3$ mm, or $\nu=100$ GHz.

 $\Theta = 1.6 \times 10^{-23} \cdot 10^{-16} = 1.6 \times 10^{-39} \, g \, cm^2 \,$ such that

(11.15)

To first order, gives energy correction, therefore for rotational terms in general:

 $F(J) = BJ(J+1) - D\left[J(J+1)\right]^2$

with some constant $D \ll B$.

Actual molecules have centrifugal stretching due to rotation.

Molecular Spectroscopy

ດ

Cowley, Tab. 11.1

 \sim

Molecules: Molecular Hydrogen

Molecules: Molecular Hydrogen

က

က

11-28

courtesy Matthew T. Russell

Molecules: Carbon Monoxide

Molecules: Carbon Monoxide

All Molecules

List of all observed interstellar and circumstellar molecules

(http://www.cv.nrao.edu/~awootten/allmols.html; last updated Nov 2005)

- **Molecules with Two Atoms** : AIF, AICI, C₂, CH, CH⁺, CN, CO, CO⁺, CP, CS, CSi, HCI, H₂, KCI, NH, NO, NS, NaCI, OH, PN, SO, S0⁺, SiN, SiO, SiS, HF, SH, FeO(?)
- Molecules with Three Atoms: C₃, C₂H, C₂O, C₂S, CH₂, HCN, HCO, HCO⁺, HCS⁺, HOC⁺, H₂O, H₂S, HNC, HNO, MgCN, MgNC, N₂H⁺, N₂O, NaCN, OCS, SO₂, c-SiC₂, CO₂, NH₂, H₃⁺, AINC, SiCN, AINC, SiNC
- **Molecules with Four Atoms:** c-C₃H, I-C₃H, C₃N, C₃O, C₃S, C₂H₂, CH₂D⁺?, HCCN, HCNH+, HNCO, HNCS, HOCO+, H₂CO, H₂CN, H₂CS, H₃0⁺, NH₃, SiC₃, C₄

Monoxide
Carbon
Molecules:

ດ

11 - 35

All Molecules

- Molecules with Five Atoms: C_5 , C_4H , C_4Si , $I-C_3H_2$, $c-C_3H_2$, CH_2CN , CH_4 , $H_{C_3}N$, HC_2NC , HCOOH, H_2CHN , H_2C_2O , H_2NCN , HNC_3 , SiH_4 , H_2COH^+
- Molecules with Six Atoms: C_5H , C_5O , C_2H_4 , CH_3CN , CH_3NC , CH_3OH , CH_3SH , HC_3NH^+ , HC_2CHO , $HCONH_2$, $I-H_2C_4$, C_5N , HC_4N
- Molecules with Seven Atoms: C₆H, CH₂CHCN, CH₃C₂H, HC₅N, HCOCH₃, NH₂CH₃, c-C₂H₄O, CH₂CHOH
- Molecules with Eight Atoms: CH₃C₃N, HCOOCH₃, CH₃COOH, C₇H, H₂C₆, CH₂OHCHO, CH₂CHCHO
- Molecules with Nine Atoms: CH_3C_4H , CH_3CH_2CN , $(CH_3)_2O$, CH_3CH_2OH , HC_7N , C_8H
- Molecules with Ten or More Atoms: CH_3C_5N ?, $(CH_3)_2CO$, NH_2CH_2COOH ?, CH_3CH_2CHO , HC_9N , $CH_3OC_2H_5$, $HC_{11}N$,