Question 1: Poynting Vector and Flux

For an electromagnetic wave,

$$
\begin{equation*}
\mathbf{E}(\mathbf{r}, t)=\mathbf{a}_{1} E_{0} \mathrm{e}^{i(\omega t-\mathbf{k} \cdot \mathbf{r})} \quad \text { and } \quad \mathbf{B}(\mathbf{r}, t)=\mathbf{a}_{2} B_{0} \mathrm{e}^{i(\omega t-\mathbf{k} \cdot \mathbf{r})} \tag{w1.1}
\end{equation*}
$$

where the unit vectors $\mathbf{a}_{1} \perp \mathbf{a}_{2}$ and where the unit vector $\mathbf{k}=\mathbf{a}_{1} \times \mathbf{a}_{2}$ points into the direction of propagation of the wave.
a) The energy transported by the wave is given by the Poynting vector

$$
\begin{equation*}
\mathbf{S}=\frac{c}{4 \pi}(\mathbf{E} \times \mathbf{B}) \tag{2.33}
\end{equation*}
$$

Show that for the wave defined above, \mathbf{S} is given by

$$
\begin{equation*}
\mathbf{S}=\frac{c}{4 \pi} E_{0} B_{0} \cos ^{2}(\omega t-\mathbf{k} \cdot \mathbf{r}) \mathbf{k} \tag{w1.2}
\end{equation*}
$$

since only the real part of \mathbf{E} and \mathbf{B} has a physical interpretation.
Remember $e^{i \varphi}=\cos \varphi+i \sin \varphi$.
b) Since the wave has a high frequency, the instantaneous value of \mathbf{S} can typically not be measured. Instead instruments measure the time-averaged value of \mathbf{S}, which we call the "flux". Show that this time average is given by

$$
\begin{equation*}
\langle S\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T / 2}^{+T / 2} S \mathrm{~d} t=\frac{c}{8 \pi} E_{0} B_{0}=c \frac{B_{0}^{2}}{8 \pi} \tag{s1.1}
\end{equation*}
$$

For simplicity, you can assume $\mathbf{k} \cdot \mathbf{r}=0$.
Note that $\int \cos ^{2} x \mathrm{~d} x=\frac{1}{2} x+\frac{1}{4} \sin 2 x$ and remember that $E_{0}=B_{0}$.

Question 2: Radiation Pressure

The following discussion is based on Section 2.7.1 of Imke de Pater and Jack J. Lissauer, 2001, Planetary Sciences, Cambridge: Cambridge Univ. Press.
a) As shown in the lecture, $B^{2} / 8 \pi$ has the units of an energy density. Convince yourself that the units of an energy density are the same as that of a pressure. Since we work in cgs units, it is good to know that the unit of force is called a "dyne" (1 dyne $=1 \mathrm{~g} \mathrm{~cm} \mathrm{~s}^{-2}$), while that of energy is an "erg" ($1 \mathrm{erg}=1 \mathrm{~g} \mathrm{~cm}^{2} \mathrm{~s}^{-2}$).
b) Convince yourself that the force excerted onto an area A if the impinging radiation is fully absorbed is given by

$$
\begin{equation*}
F_{\mathrm{rad}}=\frac{S}{c} A \tag{s2.1}
\end{equation*}
$$

This quantity is called the radiation pressure, it acts in the direction of \mathbf{S}.
c) On small particles in the solar system, the radiation pressure from the Sun can be significant. Show that the radiation force onto a particle of area A is

$$
\begin{equation*}
\mathbf{F}_{\mathrm{rad}}=\frac{L}{4 \pi r^{2}} \frac{A}{c} Q_{\mathrm{pr}} \tag{s2.1}
\end{equation*}
$$

where Q_{pr} is a correction factor called the radiation pressure coefficient.
d) For a spherical particle with density ρ and radius R, show that the ratio between the radiation force and the gravitational force excerted by the Sun is given by

$$
\begin{equation*}
\beta=\frac{\left|\mathbf{F}_{\mathrm{rad}}\right|}{\left|\mathbf{F}_{\mathrm{grav}}\right|}=\frac{3 L}{16 \pi c G M} \cdot \frac{Q_{\mathrm{pr}}}{R \rho}=5.7 \times 10^{-5} \frac{Q_{\mathrm{pr}}}{\rho R} \propto \frac{Q_{\mathrm{pr}}}{\rho R} \tag{s2.1}
\end{equation*}
$$

where the numerical value assumes that R and ρ are measured in cgs units. What is the consequence of $\beta>1$?

Question 3: Deriving the Formal Solution to the Equation of Radiative Transfer

a) By multiplying both sides of the equation of radiative transfer

$$
\frac{\mathrm{d} I_{\nu}}{\mathrm{d} \tau_{\nu}}=\frac{j_{\nu}}{\alpha_{\nu}}-I_{\nu}=S_{\nu}-I_{\nu}
$$

with $\mathrm{e}^{\tau_{\nu}}$ and some simple algebra, show that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau_{\nu}}\left(\mathrm{e}^{\tau_{\nu}} I_{\nu}\right)=\mathrm{e}^{\tau_{\nu}} S_{\nu} \tag{w3.1}
\end{equation*}
$$

b) Show by separation of variables that Eq. w3.1 can be written as

$$
\begin{equation*}
\mathrm{e}^{\tau_{\nu}} I_{\nu}\left(\tau_{\nu}\right)-I_{\nu}(0)=\int_{0}^{\tau_{\nu}} \mathrm{e}^{\tau_{\nu}^{\prime}} S_{\nu}\left(\tau_{\nu}^{\prime}\right) \mathrm{d} \tau_{\nu}^{\prime} \tag{s3.1}
\end{equation*}
$$

and that therefore

$$
\begin{equation*}
I_{\nu}\left(\tau_{\nu}\right)=I_{\nu}(0) \mathrm{e}^{-\tau_{\nu}}+\int_{0}^{\tau_{\nu}} \mathrm{e}^{-\left(\tau_{\nu}-\tau_{\nu}^{\prime}\right)} S\left(\tau_{\nu}^{\prime}\right) \mathrm{d} \tau_{\nu}^{\prime} \tag{2.93}
\end{equation*}
$$

Question 4: The Formal Solutions of the Equation of Radiative Transfer

a) Show that for a homogeneous medium, i.e., a medium in which the source function $S_{\nu}=j_{\nu} / \alpha_{\nu}$ is independent of place, the formal solution of the transfer equation 2.93 is given by

$$
\begin{equation*}
I_{\nu}=I_{\nu, 0} \mathrm{e}^{-\tau_{\nu}}+\frac{j_{\nu}}{\alpha_{\nu}}\left(1-\mathrm{e}^{-\tau_{\nu}}\right) \tag{w4.1}
\end{equation*}
$$

b) To first order, we can approximate stellar atmospheres by semi-infinite plane-parallel slabs of gas. For many stellar atmospheres, it is a good assumption that the source function is given by

$$
\begin{equation*}
S(\tau)=a+b \tau \tag{s4.1}
\end{equation*}
$$

where a and b are constants and where τ is the optical depth into the atmosphere, i.e., opposite to the direction of light propagation (so far, we've always measured τ along the direction of propagation of light). For this reason the equation of transfer is

$$
\begin{equation*}
\cos \theta \frac{\mathrm{d} I(\theta)}{\mathrm{d} \tau}=I(\theta)-S \tag{s4.2}
\end{equation*}
$$

We will now calculate the emergent intensity from the stellar atmosphere as a function of angle θ from the normal. The calculation will be somewhat less messy if we make use of a rarely employed function called the "secant", defined by

$$
\begin{equation*}
\sec \theta=\frac{1}{\cos \theta} \tag{s4.3}
\end{equation*}
$$

Apart from that the calculation will be rather similar to the derivation of the formal solution of the equation of transfer:
i. First, multiply the transfer equation with $\mathrm{e}^{-\tau \sec \theta}$ and show that

$$
\begin{equation*}
\frac{\mathrm{d}\left(I \mathrm{e}^{-\tau \sec \theta}\right)}{\mathrm{d}(\tau \sec \theta)}=-S \mathrm{e}^{-\tau \sec \theta} \tag{s4.4}
\end{equation*}
$$

where one has to remember the chain rule and

$$
\begin{equation*}
\frac{1}{\sec \theta} \frac{\mathrm{~d} I(\theta)}{\mathrm{d} \tau}=\frac{\mathrm{d} I(\theta)}{\mathrm{d}(\tau \sec \theta)} \tag{s4.5}
\end{equation*}
$$

ii. To derive the intensity $I(0, \theta)$ at the surface, integrate Eq. w4.11) over $\mathrm{d}(\tau \sec \theta)$ from 0 to ∞ to show that

$$
\begin{equation*}
I(0, \theta)=\int_{0}^{\infty} S(\tau) \mathrm{e}^{-\tau \sec \theta} \mathrm{d}(\tau \sec \theta) \tag{s4.1}
\end{equation*}
$$

What is the interpretation of this equation?
iii. Now insert $S(\tau)$ from Eq. w4.8 to derive

$$
\begin{equation*}
I(0, \theta)=a+b \cos \theta=S(\tau=\cos \theta) \tag{s4.1}
\end{equation*}
$$

that is, for all angles we see an emerging intensity equal to the value of the source function at $\tau=1$ along the line of sight. A consequence of this result is the so-called limb-darkening of the Sun.
Remember $\int x \mathrm{e}^{-x} \mathrm{~d} x=-\mathrm{e}^{-x}(x+1)$.

