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Astrophysical Radiation Processes
Sommersemester 2008

Worksheet 1

Question 1: Poynting Vector and Flux

For an electromagnetic wave,

E(r, t) = a1E0ei(ωt−k·r) and B(r, t) = a2B0ei(ωt−k·r) (w1.1)

where the unit vectors a1 ⊥ a2 and where the unit vector k = a1 × a2 points into the direction of
propagation of the wave.
a) The energy transported by the wave is given by the Poynting vector

S =
c

4π
(E×B) (2.33)

Show that for the wave defined above, S is given by

S =
c

4π
E0B0 cos2(ωt− k · r) k (w1.2)

since only the real part of E and B has a physical interpretation.
Remember eiϕ = cosϕ+ i sinϕ.

b) Since the wave has a high frequency, the instantaneous value of S can typically not be measured.
Instead instruments measure the time-averaged value of S, which we call the “flux”. Show that
this time average is given by

〈S〉 = lim
T→∞

1
T

∫ +T/2

−T/2
S dt =

c

8π
E0B0 = c

B2
0

8π
(s1.1)

For simplicity, you can assume k · r = 0.
Note that

∫
cos2 x dx = 1

2x+ 1
4 sin 2x and remember that E0 = B0.

Question 2: Radiation Pressure

The following discussion is based on Section 2.7.1 of Imke de Pater and Jack J. Lissauer, 2001,
Planetary Sciences, Cambridge: Cambridge Univ. Press.
a) As shown in the lecture, B2/8π has the units of an energy density. Convince yourself that the

units of an energy density are the same as that of a pressure. Since we work in cgs units, it is good
to know that the unit of force is called a “dyne” (1 dyne = 1 g cm s−2), while that of energy is an
“erg” (1 erg = 1 g cm2 s−2).

b) Convince yourself that the force excerted onto an area A if the impinging radiation is fully absorbed
is given by

Frad =
S

c
A (s2.1)

This quantity is called the radiation pressure, it acts in the direction of S.
c) On small particles in the solar system, the radiation pressure from the Sun can be significant. Show

that the radiation force onto a particle of area A is

Frad =
L

4πr2
A

c
Qpr (s2.1)

where Qpr is a correction factor called the radiation pressure coefficient.
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d) For a spherical particle with density ρ and radius R, show that the ratio between the radiation
force and the gravitational force excerted by the Sun is given by

β =
|Frad|
|Fgrav|

=
3L

16πcGM
· Qpr

Rρ
= 5.7× 10−5Qpr

ρR
∝ Qpr

ρR
(s2.1)

where the numerical value assumes that R and ρ are measured in cgs units. What is the consequence
of β > 1?

Question 3: Deriving the Formal Solution to the Equation of Ra-
diative Transfer

a) By multiplying both sides of the equation of radiative transfer

dIν
dτν

=
jν
αν
− Iν = Sν − Iν (2.92)

with eτν and some simple algebra, show that

d
dτν

(eτνIν) = eτνSν (w3.1)

b) Show by separation of variables that Eq. (w3.1) can be written as

eτνIν(τν)− Iν(0) =
∫ τν

0
eτ

′
νSν(τ ′ν)dτ ′ν (s3.1)

and that therefore
Iν(τν) = Iν(0)e−τν +

∫ τν

0
e−(τν−τ ′

ν)S(τ ′ν)dτ ′ν (2.93)
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Question 4: The Formal Solutions of the Equation of Radiative
Transfer

a) Show that for a homogeneous medium, i.e., a medium in which the source function Sν = jν/αν is
independent of place, the formal solution of the transfer equation 2.93 is given by

Iν = Iν,0e−τν +
jν
αν

(
1− e−τν

)
(w4.1)

b) To first order, we can approximate stellar atmospheres by semi-infinite plane-parallel slabs of gas.
For many stellar atmospheres, it is a good assumption that the source function is given by

S(τ) = a+ bτ (s4.1)

where a and b are constants and where τ is the optical depth into the atmosphere, i.e., oppo-
site to the direction of light propagation (so far, we’ve always measured τ along the direction of
propagation of light). For this reason the equation of transfer is

cos θ
dI(θ)

dτ
= I(θ)− S (s4.2)

We will now calculate the emergent intensity from the stellar atmosphere as a function of angle θ
from the normal. The calculation will be somewhat less messy if we make use of a rarely employed
function called the “secant”, defined by

sec θ =
1

cos θ
(s4.3)

Apart from that the calculation will be rather similar to the derivation of the formal solution of
the equation of transfer:

i. First, multiply the transfer equation with e−τ sec θ and show that

d
(
Ie−τ sec θ

)
d (τ sec θ)

= −Se−τ sec θ (s4.4)

where one has to remember the chain rule and

1
sec θ

dI(θ)
dτ

=
dI(θ)

d (τ sec θ)
(s4.5)

ii. To derive the intensity I(0, θ) at the surface, integrate Eq. (w4.11) over d(τ sec θ) from 0 to ∞
to show that

I(0, θ) =
∫ ∞

0
S(τ)e−τ sec θd(τ sec θ) (s4.1)

What is the interpretation of this equation?
iii. Now insert S(τ) from Eq. (w4.8) to derive

I(0, θ) = a+ b cos θ = S(τ = cos θ) (s4.1)

that is, for all angles we see an emerging intensity equal to the value of the source function at
τ = 1 along the line of sight. A consequence of this result is the so-called limb-darkening of
the Sun.
Remember

∫
xe−x dx = −e−x(x+ 1).
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