Question 1: An Application of Larmor's Formula: Thomson Scattering and the Thomson Cross Section

One of the simplest applications of Larmor's formula is the scattering of radiation by a free electron. In the classical approximation, this process is called Thomson scattering. It is obtained by considering a sinusoidal electromagnetic wave with E-vector

$$
\begin{equation*}
E(t)=E_{0} \sin \omega t \tag{w1.1}
\end{equation*}
$$

interacting with an electron at rest.
a) Assuming $v \ll c$, show that the force on the electron is

$$
\begin{equation*}
F=m_{\mathrm{e}} \ddot{\mathbf{r}}=e E_{0} \sin \omega t \tag{w1.2}
\end{equation*}
$$

and that the dipole moment of the electron is given by

$$
\begin{equation*}
d=-\frac{e^{2} E_{0}}{m_{\mathrm{e}} \omega^{2}} \sin \omega t \tag{w1.3}
\end{equation*}
$$

b) Using the results from the previous question and the dipole approximation, calculate the time averaged power emitted per unit angle and the total power emitted by the electron.
Reminder: $\left\langle\sin ^{2} \omega t\right\rangle=1 / 2$.
c) The differential cross section, $\mathrm{d} \sigma / \mathrm{d} \Omega$, is a measure how much radiation is scattered into a certain direction. It is defined through

$$
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} \Omega}=\langle S\rangle \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \tag{s1.1}
\end{equation*}
$$

where the incident flux of radiation on the electron is given by Poynting's theorem as

$$
\begin{equation*}
\langle S\rangle=\frac{c}{8 \pi} E_{0}^{2} \tag{s1.2}
\end{equation*}
$$

From your previous results show that

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\frac{e^{4}}{m_{\mathrm{e}}^{2} c^{4}} \sin ^{2} \theta=r_{0}^{2} \sin ^{2} \theta \tag{s1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
r_{0}=\frac{e^{2}}{m_{\mathrm{e}} c^{2}}=2.82 \times 10^{-13} \mathrm{~cm} \tag{s1.4}
\end{equation*}
$$

is called the classical electron radius.
d) The total cross section for the scattering of radiation off a free electron is obtained by integrating $\mathrm{d} \sigma / \mathrm{d} \Omega$ over Ω or immediately from

$$
\begin{equation*}
P=\langle S\rangle \sigma \tag{s1.1}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\sigma=\frac{8 \pi}{3} r_{0}^{2}=: \sigma_{\mathrm{T}} \tag{s1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{\mathrm{T}}=6.652 \times 10^{-25} \mathrm{~cm}^{2} \tag{s1.3}
\end{equation*}
$$

is called the Thomson cross section.

Question 2: Parseval's Theorem

The Fourier transform pair as used in this lecture was defined by

$$
\begin{equation*}
F(\omega)=\int_{-\infty}^{+\infty} f(t) \mathrm{e}^{+i \omega t} \mathrm{~d} t \text { and } f(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F(\omega) \mathrm{e}^{-i \omega t} \mathrm{~d} \omega \tag{w2.1}
\end{equation*}
$$

Provided that $f(t)$ is a sufficiently nice function, show that Parseval's theorem holds

$$
\begin{equation*}
\int|f(t)|^{2} \mathrm{~d} t=\frac{1}{2 \pi} \int|F(\omega)| \mathrm{d} \omega=\int|F(\nu)|^{2} \mathrm{~d} \nu \tag{w2.2}
\end{equation*}
$$

Reminder 1: $|f|^{2}=f f^{*}$ where f^{*} is the complex conjugate of f
Reminder 2: The δ-function can be written as

$$
\begin{equation*}
\delta(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \mathrm{e}^{i \omega t} \mathrm{~d} \omega \tag{4.34}
\end{equation*}
$$

