Friedrich-Alexander-Universität Astrophysical Radiation Processes Erlangen-Nürnberg

Sommersemester 2008 Worksheet 6

Question 1: Synchrotron Self-Absorption

For an electron gas, the energy density is $u = nkT/(\gamma_{\rm SH} - 1)$ where $\gamma_{\rm SH}$ is the ratio of specific heats, which is 4/3 for a relativistic gas and 5/3 for a non-relativistic gas.

a) Convince yourself that it makes sense to associate a temperature $T_{\rm e}$ with electrons of particle energy $\gamma m_{\rm e} c^2$ by setting

$$\gamma m_{\rm e}c^2 = 3kT_{\rm e} \tag{w1.1}$$

b) In the Rayleigh-Jeans-limit, the flux of a source with angular size Ω is

$$S_{\nu} = \frac{2kT}{\lambda^2} \Omega \tag{w1.2}$$

Taking the above into account, show that for optically thick synchrotron radiation

$$S_{\nu} \propto \nu^{5/2} B^{-1/2}$$
 (w1.3)

Note: $\gamma \sim (\nu/\nu_L)^{1/2}$ and $\nu_L = eB/m_{\rm e}c$