Coshto ogy

Department of Physics University of Warwick

http://astro.uni-tuelgingen.de/-wilms/teach/cospio-

Contents

- "Old" Cosmology
 - Space and Time
 - Friedmann Equations
 - World Models
- "Modern" Cosmology
 - (Big Bang)
 - (Inflation)
 - Cosmological Constant and H_0
 - Formation of Structure
- Conclusions

2

Contents

Introduction

Cosmology: science of the universe as a whole

How did the universe evolve to what it is today?

Based on four basic facts:

The universe • expands,

- is isotropic,
- and is homogeneous.

Isotropy and homogeneity of the universe: "cosmological principle". Perhaps (for us) the most important fact is:

• The universe is habitable for humans.

("anthropic principle")

The one question cosmology does not attempt to answer is: How came the universe into being? \implies Realm of theology!

Introduction

Edwin Hubble

Christianson, 1995, p. 165

Edwin Hubble (1889–1953):

- Realisation of galaxies as being outside of the Milky Way
- Discovery that universe is expanding

Founder of modern extragalactic astronomy

Expansion of the Universe

WARWICK

Redshifts, I

Hubble: spectral lines in galaxies are more and more redshifted with increasing distance.

Expansion of the Universe

Redshifts, II

THE UN

ΞK

 $c = 300000 \,\mathrm{km}\,\mathrm{s}^{-1}$ (speed of light)

2dF QSO Redshift survey

Expansion of the Universe

3

Hubble Relation

Hubble relation (1929):

The redshift of a galaxy is proportional to its distance: $v = cz = H_0d$

where H_0 : "Hubble constant". *Measurement:* determine vfrom redshift (easy), d with standard candles (difficult) $\implies H_0$ from linear regression. Hubble Space Telescope finds

 $H_0 = 72 \pm 8 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

Discussions in previous years on value of H_0 are over...

Expansion of the Universe

Homogeneity

2dF Survey, \sim 220000 galaxies total

Homogeneity: "The universe looks the same, regardless from where it is observed" (on scales \gg 100 Mpc).

WARW

sity of ICK

Expansion of the Universe

5

Peebles (1993): Distribution of 31000 radio sources on northern sky (wavelength $\lambda = 6$ cm)

WAR

ÌΚ

Isotropy \iff The universe looks the same in all directions.

N.B. Homogeneity *does not* imply isotropy, and isotropy around one point does not imply homogeneity!

Expansion of the Universe

6

A. Einstein (1879–1955)

Albert Einstein: Presence of mass leads to curvature of space (=gravitation) ⇒ General Theory of Relativity (GRT) GRT is applicable to Universe as a whole!

Expansion of the Universe

THE UNIVERSITY OF

World Models

Theoretical cosmology: Combination of 1. relativity theory

Expansion of the Universe

THE UNIVERSITY OF

World Models

Theoretical cosmology:

Combination of

- 1. relativity theory
- 2. thermodynamics

Expansion of the Universe

THE UNIVERSITY OF

World Models

Theoretical cosmology: Combination of

- 1. relativity theory
- 2. thermodynamics
- 3. quantum mechanics

Expansion of the Universe

WARWICK

World Models

Theoretical cosmology: Combination of

- 1. relativity theory
- 2. thermodynamics
- 3. quantum mechanics
- \implies complicated

Expansion of the Universe

WARWICK

A. Einstein (1879–1955)

Theoretical cosmology:

Combination of

- 1. relativity theory
- 2. thermodynamics
- 3. quantum mechanics
- \implies complicated

WA

Typically calculation performed in three steps:

- 1. Describe metric following the cosmological principle
- 2. Derive evolution equation from GRT
- 3. Use thermodynamics and quantum mechanics to obtain equation of state
 ... and then do some maths

Expansion of the Universe

12

A.A. Friedmann

(1888 - 1925)

Friedmann: Mathematical description of the Universe using normal "fixed" coordinates ("comoving coordinates"), plus scale factor R which describes evolution of the Universe.

Expansion of the Universe

THE UNIVERSITY OF

R small

R large

Misner, Thorne, Wheeler

Friedmann: Mathematical description of the Universe using normal "fixed" coordinates ("comoving coordinates"), plus scale factor R which describes evolution of the Universe.

WA

ÌΚ

Expansion of the Universe

14

Using GR, derive equation for evolution of scale factor ("Friedmann equations").

World Model: Evolution of R as a function of time

Equations depend on

- 1. Value of *H* as measured today (note: *H* is time dependent!)
- 2. Density of universe, $\Omega = \Omega_{\rm m} + \Omega_{\Lambda}$

Density: universe evolves under its self gravitation, typically parameterised in units of critical density, ρ_{crit} (density when universe will collapse in the future):

$$\Omega = \frac{\rho}{\rho_{\rm crit}} \qquad \text{where} \qquad \rho_{\rm crit} = \frac{3H_0^2}{8\pi G}$$

currently: $\rho_{\rm crit}\sim 1.67\times 10^{-24}\,{\rm g\,cm^{-3}}$ (3. . . 10 H-Atoms m^{-3}).

Total Ω is sum of:

- 1. Ω_m : Matter, i.e., everything that leads to gravitative effects, \leq 3% is baryonic, i.e., not "dark matter" but matter as we know it
- 2. $\Omega_{\Lambda} = \Lambda c^2 / 3H^2$: contribution caused by vacuum energy density Λ ("dark energy")

Expansion of the Universe

Many different kinds of world models are possible, behaviour of universe depends on Ω und $\Lambda.$

WARWICK

THE UNIVER

Expansion of the Universe

16

3K CMB

Penzias & Wilson (1965):
"Measurement of Excess
Antenna Temperature at
4080 Mc/s"
→ Cosmic Microwave
Background radiation (CMB)

CMB spectrum is
blackbody with temperature

 $T_{\sf CMB} =$ 2.728 \pm 0.004 K.

(Smoot et al., 1997, Fig. 1)

Extrapolating CMB temperature back in time shows:

Universe started with a hot big bang, has since cooled down.

Billions Years from Today

SITY OF

Note: Extrapolation backwards gives age of universe as *roughly* $1/H_0!$ for $H_0 = 72 \text{ km s}^{-1} \text{ Mpc}^{-1} = 2.3 \times 10^{-18} \text{ s}^{-1}$, giving an age of 13.6 Gyr.

THE UNIVER

3K CMB

2

History of the universe

F	R(t)	t ainaa PP	$T[\mathbf{K}]$	homatter	Major Events
		10 ⁻⁴²	[K] 10 ³⁰		Planck era, "begin of physics"
		10 ⁻⁴⁰³⁰	10 ²⁵		Inflation (IMPLIES $\Omega = 1$)
1	0 ⁻¹³	$\sim \! 10^{-5} \mathrm{s}$	$\sim \! 10^{13}$	~10 ⁹	generation of p-p ⁻ , and baryon anti-baryon pairs from radiation background
3	imes 10 ⁻⁹	1 min	10 ¹⁰	0.03	generation of e ⁻ -e ⁺ pairs out of radiation background
1	0 ⁻⁹	10 min	$3 imes 10^9$	10 ⁻³	nucleosynthesis
1	0 ⁻⁴ 10 ⁻³	10 ⁶⁷ yr	10 ³⁴	10^{-2118}	End of radiation dominated epoch
7	imes 10 ⁻⁴	380000 yr	4000	10 ⁻²⁰	Hydrogen recombines, decoupling of matter and radiation
		$200 imes 10^6 \text{yr}$			first stars formed
1		$13.7 imes10^9\mathrm{yr}$	3	10 ⁻³⁰	now
Histo	History of the universe				F

Conclusions

Modern Cosmology: Determination of H_0 , Ω and Λ from observations and comparison with theory

In the following: Examples for new measurements to determine Ω and Λ :

- Supernova observations and
- Cosmic Microwave Background (WMAP).

General hope: confirmation that $\Omega_m + \Omega_\Lambda = 1$ as predicted by theory of inflation (this implies a *flat* universe).

History of the universe

SN1994d (HST WFPC)

Supernovae have luminosities comparable to whole galaxies: $\sim 10^{51}$ erg/s in light, $100 \times$ more in neutrinos.

Supernovae

After correction of systematic effects: SN Ia lightcurves all look the same \implies standard candle

 \implies can measure their distances

Supernovae

THE UNIVERSITY OF ΞK

WA

Supernovae

WAR

Supernovae

THE UNIVERSITY OF CK

Supernovae

Supernova observations are well explained by models with $\Omega_{\rm m} = 0.25$ and $\Omega_{\Lambda} = 0.75$.

 $\Omega_{\Lambda} = 0$ is *excluded* by data!

Supernovae

WARWICK

COBE (1992): First map of 3K-CMB T = 2.728 K

Overlaid: Dipole anisotropy caused by motion of the solar system Temperature fluctuation: $\Delta T/T \sim 10^{-4}$

At level of $\Delta T/T \sim 10^{-5}$: Deviations from isotropy due to structure formation

CMB

Wilkinson Microwave Anisotropy Probe (WMAP): Launch 2001 June 30, first publications 2003 February

MAP990389

WMAP, W-Band, $\lambda =$ 3.2 mm, $\nu =$ 93.5 GHz, resolution 0.21 $^{\circ}$

Results

courtesy Wayne Hu

After Big Bang: universe dense ("foggy"), photons efficiently scatter off electrons \implies coupling of radiation and matter

Universe cools down: recombination of protons and electrons into hydrogen

- \implies no free electrons
- \implies scattering far less efficient
- ⇒ Photons: "free streaming"

Photons escaping from overdense regions loose energy (gravitational red shift) \implies Observable as temperature fluctuation (Sachs Wolfe Effect)

CMB Fluctuations \sim Gravitational potential at $z \sim 1100 \Longrightarrow$ structures

THE UNIVERSITY OF

(after Hu et al., 1995)

Power spectrum of CMB depends on

 $\Omega_{\rm m}$ $H_{\rm 0}$ Ω_{Λ}

Results

THE UN

ĽΚ

Power spectrum of CMB depends on

 $\Omega_{\rm m}$ $H_{\rm 0}$ Ω_{Λ}

WMAP best fit parameters (assuming $\Omega = 1$, $H_0 =: h \cdot 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$):

 $h = 0.72 \pm 0.05$ $\Omega_{\rm m} h^2 = 0.14 \pm 0.02$

Results

Confidence regions for Ω_{Λ} and Ω_{m} . dark: 68% confidence, outer region: 90%

> $\Omega = 1.02 \pm 0.02$ $\Omega_{\rm m} = 0.14 \dots 0.3$ $H_0 = 72 \pm 5 \,{\rm km \, s^{-1} \, Mpc^{-1}}$

leading to an age of the universe of 13.7 billion years.

This means:

 \sim 70% of the universe is due to "dark energy"

... and what this is: we have no clue

Large Scale Structures, I

We can use theories for nature of Λ and measured values of H_0 and Ω to predict how galaxies evolve in the universe.

Structure Formation

THE UNIVERSITY OF WARWICK

Large Scale Structures, II

2dF Survey, \sim 220000 galaxies total \Longrightarrow structures

WARWICK

Structure Formation

2

Hubble Ultra Deep Field (11 days exposure!)

Hubble Ultra Deep Field (11 days exposure!)